您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 尼克尔森微观经济学课件中文版ch07
Chapter7第七章PRODUCTIONFUNCTIONS生产函数1ProductionFunction生产函数•Thefirm’sproductionfunctionforaparticulargood(q)showsthemaximumamountofthegoodthatcanbeproducedusingalternativecombinationsofcapital(k)andlabor(l)企业的特定商品的生产函数,表示了使用不同的资本(k)和劳动(l)组合,所能生产的商品的最大量q=f(k,l)2MarginalPhysicalProduct边际实物产量•Tostudyvariationinasingleinput,wedefinemarginalphysicalproductastheadditionaloutputthatcanbeproducedbyemployingonemoreunitofthatinputwhileholdingotherinputsconstant为了研究单个投入的变化,我们定义边际实物产量为:当保持其他投入不变时,多使用一单位的该投入所能额外生产的产出3kkfkqMPcapitalofproductphysicalmarginallllfqMPlaborofproductphysicalmarginalDiminishingMarginalProductivity边际生产力递减•Themarginalphysicalproductofaninputdependsonhowmuchofthatinputisused一种投入的边际产量,依赖于所使用的该投入的数量•Ingeneral,weassumediminishingmarginalproductivity一般我们假定边际生产力递减401122ffkfkMPkkk02222fffMPlllllDiminishingMarginalProductivity边际生产力递减•Becauseofdiminishingmarginalproductivity,19thcenturyeconomistThomasMalthusworriedabouttheeffectofpopulationgrowthonlaborproductivity因为边际生产力递减,19世纪经济学家,托马斯马尔萨斯担心人口增长对劳动生产力的影响•Butchangesinthemarginalproductivityoflaborovertimealsodependonchangesinotherinputssuchascapital但是劳动的边际生产力随时间的变化也取决于其他的投入,比如资本–weneedtoconsiderflkwhichisoften0我们需要考虑flk(通常0)5AveragePhysicalProduct平均实物产量•Laborproductivityisoftenmeasuredbyaverageproductivity劳动生产力通常以平均生产力衡量6llll),(inputlaboroutputkfqAP•NotethatAPlalsodependsontheamountofcapitalemployed注意,APl也依赖于所使用的资本的数量ATwo-InputProductionFunction两种投入的生产函数•Supposetheproductionfunctionforflyswatterscanberepresentedby假设苍蝇拍的生产函数可以表示为q=f(k,l)=600k2l2-k3l3•ToconstructMPlandAPl,wemustassumeavaluefork为了得到MPl和APl,我们必须假定k值–letk=10令k=10•Theproductionfunctionbecomes生产函数变为q=60,000l2-1000l37ATwo-InputProductionFunction两种投入的生产函数•Themarginalproductivityfunctionis边际生产力函数为MPl=q/l=120,000l-3000l2whichdiminishesaslincreases(assumel20)上式随着l增加递减(假定l20),因为fll=120,000-6000l•Thisimpliesthatqhasamaximumvalue这意味着,q存在最大值:120,000l-3000l2=040l=l2l=40•Laborinputbeyondl=40reducesoutput超过l=40的劳动投入会减少产出8ATwo-InputProductionFunction两种投入的生产函数•Tofindaverageproductivity,weholdk=10andsolve为了得到平均生产力,我们令k=10并求解APl=q/l=60,000l-1000l2•APlreachesitsmaximumwhereAPl达到其最大值,当APl/l=60,000-2000l=0l=309ATwo-InputProductionFunction两种投入的生产函数•Infact,whenl=30,bothAPlandMPlareequalto900,000事实上,当l=30,APl和MPl都等于900,000•Thus,whenAPlisatitsmaximum,APlandMPlareequal所以,当APl达到其最大值时,APl和MPl相等10IsoquantMaps等产量图•Toillustratethepossiblesubstitutionofoneinputforanother,weuseanisoquantmap为了描述投入间可能的替代,我们使用等产量图•Anisoquantshowsthosecombinationsofkandlthatcanproduceagivenlevelofoutput(q0)等产量线,表示了可以生产给定产出水平的k和l的组合f(k,l)=q011IsoquantMap等产量线12lperperiodkperperiod•Eachisoquantrepresentsadifferentlevelofoutput每条等产量线,代表了一个不同的产出水平–outputrisesaswemovenortheast随着我们向东北方向移动,产出增加q=30q=20MarginalRateofTechnicalSubstitution(RTS)边际技术替代率13lperperiodkperperiodq=20--slope=marginalrateoftechnicalsubstitution(RTS)-斜率=边际技术替代率(RTS)•Theslopeofanisoquantshowstherateatwhichlcanbesubstitutedfork等产量线的斜率,表示了l可以被k替代的比率lAkAkBlBABRTS0andisdiminishingforincreasinginputsoflaborRTS0并且随着劳动投入的增加而递减MarginalRateofTechnicalSubstitution(RTS)边际技术替代率•Themarginalrateoftechnicalsubstitution(RTS)showstherateatwhichlaborcanbesubstitutedforcapitalwhileholdingoutputconstantalonganisoquant边际技术替代率(RTS),表示了保持产出在同一等产量线上不变,劳动可以被资本替代的比值140)for(qqddkkRTSllRTSandMarginalProductivitiesRTS和边际生产率•Takethetotaldifferentialoftheproductionfunction:对生产函数求全微分15dkMPdMPdkkfdfdqkllll•Alonganisoquantdq=0,so沿同一等产量线dq=0,所以dkMPdMPkllkqqMPMPddkkRTSlll0)for(•HencetheRTSisgivenbytheratiooftheinputs’marginalproductivities.所以RTS等于投入的边际生产力之比RTSandMarginalProductivitiesRTS和边际生产率•BecauseMPlandMPkwillbothbenonnegative,RTSwillbepositive(orzero)因为MPl和MPk都是非负的,RTS将是正的(或者0)•However,itisgenerallynotpossibletoderiveadiminishingRTSfromtheassumptionofdiminishingmarginalproductivityalone然而,单独从边际生产力递减的假设推出RTS递减,一般是不可能的16RTSandMarginalProductivitiesRTS和边际生产率•Toshowthatisoquantsareconvex,wewouldliketoshowthatd(RTS)/dl0为了说明等产量线凸向原点,我们需要说明d(RTS)/dl0•SinceRTS=fl/fk因为RTS=fl/fk17llldffdddRTSk)/(2)()]/()/([kkkkkkfddkfffddkfffddRTSllllllllRTSandMarginalProductivitiesRTS和边际生产率•Usingthefactthatdk/dl=-fl/fkalonganisoquantandYoung’stheorem(fkl=flk)由等产量线上dk/dl=-fl/fk的事实和杨格定理(fkl=flk)18322)()2(kkkkkkffffffffddRTSllllll•Becausewehaveassumedfk0,thedenominatorispositive因为我们已假设fk0,所以分母为正•Becausefllandfkkarebothassumedtobenegative,theratiowillbenegativeiffklispositive因为fll和fkk都假设为负,如果fkl为正,则比值为负RTSandMarginalProductivitiesRTS和边际生产率•Intuitively,itseemsreasonablethatfkl=flkshouldbepositive直觉上,fkl=flk应该为正是合理的–ifworkershavemorecapital,theywouldhavehighermarginalproductivities如果工人拥有更多的资本,他们的边际生产力会更高•Butsomeproductionfunctionshavefkl0oversomeinputranges但一些生产函数在某些投入区间内,有fkl0–whenweassumediminishingRTSweareassumingthatMPlandMPkdiminishquicklyenoughtocompensateforanypossiblenegativecross-productivityeffects当我们假设RTS递减时,我们假设MPl和MPk减小地足够快,以弥补任何可能的负的交叉生产力影响19ADiminishingRTSRTS递减•Supposetheproductionfunctionis假设生产函数为q=f(k,l)=600k2l2-k3l3•Forthisproductionfunction对于这一生产函数MPl=
本文标题:尼克尔森微观经济学课件中文版ch07
链接地址:https://www.777doc.com/doc-5263480 .html