您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 基于FPGA音乐硬件演奏电路设计
设计报告课程名称任课教师设计题目乐曲硬件演奏电路班级姓名学号日期一.题目分析1、利用可编程逻辑器件FPGA,设计乐曲硬件演奏电路,其结构框图如下图所示:2、功能要求利用数控分频器设计硬件乐曲电路,由键盘输入控制音响,同时可自动演奏乐曲。演奏时可选择键盘输入乐曲或者已存入的乐曲,并配以一个扬声器,该设计产生的音乐选自“梁祝”片段。二、方案选择与利用微处理器来实现乐曲演奏相比,以纯硬件完成乐曲演奏电路的逻辑要复杂得多,如果不借助功能强大的EDA工具和硬件描述语言,仅凭传统的数字逻辑技术,即使最简单的演奏电路也难以实现。三、细化框图(1)音乐硬件演奏电路基本原理硬件电路的发声原理,声音的频谱范围约在几十到几千赫兹,若能利用程序来控制FPGA芯片某个引脚输出一定频率的矩形波,接上扬声器就能发出相应频率的声音。乐曲中的每一音符对应着一个确定的频率,要想FPGA发出不同音符的音调,实际上只要控制它输出相应音符的频率即可。乐曲都是由一连串的音符组成,因此按照乐曲的乐谱依次输出这些音符所对应的频,就可以在扬声器上连续地发出各个音符的音调。而要准确地演奏出一首乐曲,仅仅让扬声器能够发生是不够的,还必须准确地控制乐曲的节奏,即乐曲中每个音符的发生频率及其持续时间是乐曲能够连续演奏的两个关键因素。模式选择auto手动输入基准时钟12MHz时钟电路音乐节拍产生电路数控分频器电路音符查表电路扬声器4MHz(2)音符频率的获得多个不同频率的信号可通过对某个基准频率进行分频器获得。由于各个音符的频率多为非整数,而分频系数又不能为小数,故必须将计算机得到的分频系数四舍五入取整。若基准频率过低,则分频系数过小,四舍五入取整后的误差较大。若基准频率过高,虽然可以减少频率的相对误差,但分频结构将变大。实际上应该综合考虑这两个方面的因素,在尽量减少误差的前提下,选取合适的基准频率。本设计中选取750KHz的基准频率。由于现有的高频时钟脉冲信号的频率为12MHz,故需先对其进行16分频,才能获得750KHz的基准频率。对基准频率分频后的输出信号是一些脉宽极窄的尖脉冲信号(占空比=1/分频系数)。为提高输出信号的驱动能力,以使扬声器有足够的功率发音,需要再通过一个分频器将原来的分频器的输出脉冲均衡为对称方波(占空比=1/2),但这时的频率将是原来的1/2。下表中各音符的分频系数就是从750KHz的基准频率二分频得到的375KHz频率基础上计算得到的。由于最大分频系数是1274,故分频器采用11位二进制计数器能满足要求,乐曲中的休止符,只要将分频系数设为0,即初始值=211-1=2047,此时扬声器不会发声。各个音符的频率及其对应的分频系数(基准频率375KHz)(3)乐曲节奏的控制本设计中的梁祝的乐曲,最小的节拍为1/4拍,若将1拍的时间定为1秒,则只需要提供一个4Hz的时钟频率即可产生1/4拍的时长(0.25秒),对于其它占用时间较长的节拍(必为1/4拍的整数倍)则只需要将该音符连续输出相应的次数即可。计数时钟信号作为输出音符快慢的控制信号,时钟快时输出节拍速度就快,演奏的速度也就快,时钟慢时输出节拍的速度就慢,演奏的速度自然降低。(4)乐谱发生器本文将乐谱中的音符数据存储在LPM-ROM中,如“梁祝”乐曲中的第一个音符为“3”,此音在逻辑中停留了4个时钟节拍,即1秒的时间,相应地,音符“3”就要在LPM-ROM中连续的四个地址上都存储。当一个4Hz的时钟来时,相应地就从LPM-ROM中输出一个音符数据。音符名频率(Hz)分频系数计数初值音符名频率(Hz)分频系数计数初值休止符37500002047中音4796.1784681579低音1294.3491274773中音5882.3534251622低音2330.3961135912中音6989.4463791668低音3370.9210111036中音71136.3633301717低音4386.5989701077高音11175.5493191728低音5394.7379501197高音21353.7902771770低音6495.3767571290高音31512.0972481799低音7555.566751372高音41609.4422331814中音1588.6976371410高音51802.8842081839中音2638.845871480高音62027.0271851862中音3742.5745051542高音72272.7271651882NoteTabsinstclkclkSELSELRSTRSTToneIndex[3..0]ToneIndex[3..0](5)音乐硬件演奏电路总体设计流程当一个4Hz的时钟脉冲来到时,乐谱发生器模块输出一个音符数据给分频系数模块,分频系数模块输出此音符相应的分频系数,将分频系数送给数控分频器模块,当12MHz的时钟脉冲来到时,数控分频器就根据分频系数输出相应的频率(即此音符所对应的发生频率)给扬声器,扬声器就可发出对应音符的声音来.连续的4Hz的时钟脉冲就将乐谱发生器里所存储的音符数据一个接一个的送给了分频系数模块,再经过数控分频模块,最后扬声器一个接一个的发出音符数据所对应的声音来。曲子也就流畅的播放出来了。音乐硬件演奏电路主要是用VHDL语言来设计,并利用Quartus6.0软件工具来编译、测试和仿真,音乐硬件演奏电路设计总体设计方框图如下图所示四、程序与仿真4.1单元模块程序设计根据顶层原理图,共分为music模块、地址发生器模块、分频预置数模块、十六进制模块、数控分频模块这五个模块。music模块存放乐曲中的音符数据,地址发生器模块作为music模块中所定制的音符数据ROM的地址发生器,分频预置数模块提供分频预置数即给数控分频模块提供计数初值,十六进制模块对12MHz的时钟脉冲进行16分频,得到750KHz的频率,给数控分频模块提供时钟脉冲。数控分频模块根据分频预置数输出各个音符所对应的频率。4.1.1音乐节拍和音调发生器模块ToneTabainstIndex[3..0]Index[3..0]CODE[3..0]CODE[3..0]HIGHHIGHTone[10..0]Tone[10..0]clockaddress[7..0]q[3..0]A[7..0]B[7..0]OUT[7..0]ADDERDQPREENACLRSELDATAADATABOUT0MUX21SELDATAADATABOUT0MUX21music:u1Add08'h01--clkSELRSTToneIndex[3..0]comb~[7..0]comb~[15..8]Counter[7..0](1)音乐节拍和音调发生器模块RTL电路图(2)地址发生器模块地址发生器模块设置了一个8位二进制计数器(计数最大值为256),作为音符数据ROM的地址发生器。每来一个时钟脉冲信号(Clk),8位二进制计数器就计数一次,ROM文件中的地址也就随着递增,音符数据ROM中的音符也就一个接一个连续的取出来了。在地址发生器的VHDL设计中,这个计数器的计数频率选为4Hz,即每一计数值的停留时间为0.25秒,恰为当全音符设为1秒,四四拍的4分音符持续时间。例如,地址发生器在以下的VHDL逻辑描述中,“梁祝”乐曲的第一个音符为“3”,此音在逻辑中停留了4个时钟节拍,即1秒时间。那么相应随着程序[4]中的计数器按4Hz的时钟频率作加法计数时,即随地址递增时,将从音符数据ROM中将连续取出4个音符“3”通过toneindex[3..0]端口输向分频预置数模块。这样梁祝乐曲中的音符就一个接一个的通过toneindex[3..0]端口输向分频预置数模块。4.2音乐谱对应分频预制数查表电路模块(1)音乐谱分频预置数模块(2)音乐谱对应分频预制数查表电路VHDL程序设计SpeakerainstclkclkTone[10..0]Tone[10..0]SpkSSpkSDENAQPRECLRA[3..0]B[3..0]OUT[3..0]ADDERA[10..0]B[10..0]OUT[10..0]ADDERA[11..0]B[11..0]OUTEQUALDENAQPRECLRA[3..0]B[3..0]OUTLESS_THANDENAQPRECLRDQPREENACLRDQPREENACLRSELDATAADATABOUT0MUX21\DelaySpkS:Count2SpkS~reg0clkSpkSTone[10..0]FullSpkS\GenSpkS:Count11[10..0]Equal01'h0--12'h7FF--\DivideCLK:Count4[3..0]Add04'h1--Add111'h001--Count11~[10..0]LessThan04'hB--音乐谱分频预置数模块是乐曲简谱码对应的分频预置数查表电路。它提供了每个音符所对应的分频预置数,即给数控分频模块提供计数初值,这里以“梁祝”乐曲为例,列出了在这个乐曲中所用到的13个音符的分频预置数。在这个模块的VHDL逻辑描述中设置了四四拍乐曲中全部音符所对应的分频预置数,共13个,每一音符的停留时间由音乐节拍和地址发生器模块的时钟(Clk)的输入频率决定,在此为4Hz。这13个值的输出由程序[3]的4位输入值index[3..0]确定。输向程序[4]中index[3..0]的值又由地址发生器模块的输出toneindex[3..0]的输出值和持续时间决定。模块的功能是输出各个音符所对应的分频预置数,即当index是“0000”,tone输出为2047,即休止符的分频预置数;当index是“0101”时,tone输出为1197即低音5的分频预置数;当index是“1111”时,tone输出为1728即高音1的分频预置数等等其它状态时,tone分别输出相应音符的分频预置数。4.3音乐符数控11分频电路模块(1)音乐符数控11分频电路模块(2)音乐符数控11分频电路模块RTL电路图(3)音乐符数控11分频模块电路VHDL程序设计音符的频率由数控分频模块获得,这是一个数控分频电路。它是由一个初值可变的加法计数器构成。该计数器的模为2047,当计数器记满时,计数器产生一个溢出信号FULL,此溢出信号就是用作发音的频率信号。在计数器的输入端给定不同的初值,而此预置数就是表1中的计数初值,就可得到不同音符的发音频率信号。它计满时所需要的计数初值可由下式来表示。计数初值(Tone)=2047-分频系数而分频系数又可有下式来求:分频系数=基准频率/音符的发生频率低音时Tone值小,分频系数大,溢出信号周期长,扬声器发出的声音低,Tone随音乐的乐谱变化大,自动控制分频比,实现了数控分频,发生信号的频率与音调Tone成正比。这就是利用数控分频器自动演奏音乐的原理。时钟(Clk)端输入的是在十六进制模块里对12MHz的信号进行16分频得到的750KHz,750KHz的信号根据分频预置数模块中所提供的计数初值,分别得出相应音符频率的两倍值。此时从数控分频器中出来的输出信号是脉宽极窄的脉冲式信号,为了有利于驱动扬声器,需另加一个D触发器以均衡其占空比,这时的频率就变为原来的1/2,刚好就是相应音符的频率。数控分频模块中对Clk输入信号的分频比由11位预置数tone[10..0]决定。Fout的输出频率将决定每一个音符的音调,这样,分频计数器的预置值tone[10..0]与Fout的输出频率就有了对应关系。例如在分频预置数模块中若取tone[10..0]=1036,将发出音符为“3”音的信号频率。4.4乐曲演奏音符数据文件(梁祝)WIDTH=4;--乐曲演奏数据DEPTH=256;Address_radix=dec;Data_radix=dec;CONTENTBEGIN333355568889685512121215131210129999999099910776655568899338865685555555510101012779968555555350335679666
本文标题:基于FPGA音乐硬件演奏电路设计
链接地址:https://www.777doc.com/doc-5264847 .html