您好,欢迎访问三七文档
代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。F.Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。在此简要介绍代数学的有关历史发展情况。“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilmal-jabrwa’lmuqabalah,直译应为《还原与对消的科学》,al-jabr意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来。一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓。另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī),祖先是花拉子模人。花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家。东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米。公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作。公元830年,马蒙在巴格达创办了著名的“智慧馆”(Baytal-Hikmah),是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一。马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世。花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期。花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域,他撰写了许多重要的科学著作。在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》。1859年,我国数学家李善兰首次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,亦即:代数,就是运用文字符号来代替数字的一种数学方法。古希腊数学家丢番图(Diophantus)用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》(Arithmetica)。其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想,故有“代数学之父”(Fatherofalgebra)的称号。代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。1、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。它后来被阿拉伯人采用,之后传到西欧。15世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺(Peano)进一步完善了格拉斯曼的体系。算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其它分支的最坚实的基础。2、初等代数作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。初等代数的主要内容在16世纪便已基本上发展完备了。古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。3世纪的丢番图用有理数求一次、二次不定方程的解。13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。16世纪意大利数学家发现了三次和四次方程的解法。代数学符号发展的历史,可分为三个阶段。第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。韦达(Viète)在他的《分析方法入门》(Inartemanalyticemisagoge,1591)著作中,首次系统地使用了符号表示未知量的值进行运算,提出符号运算与数的区别,规定了代数与算术的分界。韦达是第一个试图创立一般符号代数的的数学家,他开创的符号代数,经笛卡尔(Descarte)改进后成为现代的形式。笛卡尔用小写字母a,b,c等表示已知量,而用x,y,z代表未知量。这种用法已经成为当今的标准用法。“+”、“-”号第一次在数学书中出现,是1489年维德曼的著作《商业中的巧妙速算法》(BehendundhüpschRechnunguffallenkauffmanschafften,1489)。不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。1540年,雷科德(R.Rcorde)开始使用现在使用的“=”。到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。1600年哈里奥特(T.Harriot)创用大于号“>”和小于号“<”。1631年,奥屈特给出“×”、“÷”作为乘除运算符。1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。公元前4世纪,古希腊人发现无理数。公元前2世纪(西汉时期),我国开始应用负数。1545年,意大利的卡尔达诺(N.Cardano)在《大术》中开始使用虚数。1614年,英国的耐普尔发明对数。17世纪末,一般的实数指数概念才逐步形成。3、高等代数在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。而在欧洲,第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introductiondl'analysedeslignescourbesalge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。1764年,Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地
本文标题:代数发展简史
链接地址:https://www.777doc.com/doc-528746 .html