您好,欢迎访问三七文档
关于核能的调研报告引言:随着社会发展,能源问题、环境问题逐渐成为人们生活、科研的焦点,因为这不仅关乎人类自身及其后代的问题,还关乎地球发展问题。而当今社会能源主要来自于C的化合物(如石油,煤等),这些能源存在的主要问题是:不可再生,环境污染。而核能,虽然不是可再生能源,但较之于传统能源,有着巨大的潜力:其所含能量密度高,污染小。核能正逐渐成为人类能源的主体。调研内容:核裂变原理及历史核能(或称原子能)是通过改变质量从原子核释放的能量,符合爱因斯坦质能方程E=mc2。核能通过三种核反应之一释放:1、核裂变,打开原子核的结合力。2、核聚变,原子的粒子结合在一起。3、核衰变,自然的慢得多的裂变形式。1938年德国科学家哈恩用中子轰击铀原子核,发现了核裂变现象。1942年12月2日美国芝加哥大学成功启动了世界上第一座核反应堆。1945年8月6日和9日美国将两颗原子弹先后投在了日本的广岛和长崎。1957年前苏联建成了世界上第一座核电站------奥布灵斯克核电站,其装机容量为5兆瓦。在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。核电厂发电的基本原理如下:利用核反应堆中铀燃料核裂变连锁反应所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外,其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。核能发电所使用的的铀235纯度只约占3%-4%,其馀皆为无法产生核分裂的铀238。核反应所放出的热量较燃烧化石燃料所放出的能量要高很多(相差约百万倍),比较起来所以需要的燃料体积比火力电厂少相当多。动力堆的发展最初是出于军事需要,后来,由于核浓缩技术的发展,到1966年,核能发电的成本已低于火力发电的成本。中国大陆的核电起步较晚,80年代才动工兴建核电站。中国自行设计建造的30万千瓦(电)秦山核电站在1991年底投入运行。大亚湾核电站于1987年开工,于1994年全部并网发电。核电优缺点核电有着无可比拟的优势:1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。2.核能发电不会产生加重地球温室效应的二氧化碳。3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。但是,其缺点更不容忽视:1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。3.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。核燃料关于其燃料放方面,铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2050吨优质煤。然而陆地上铀的储藏量并不丰富,且分布极不均匀。只有少数国家拥有有限的铀矿,全世界较适于开采的只有100万吨,加上低品位铀矿及其副产铀化物,总量也不超过500万吨,按目前的消耗量,只够开采几十年。而在巨大的海水水体中,却含有丰富的铀矿资源。据估计,海水中溶解的铀的数量可达45亿吨,相当于陆地总储量的几千倍。如果能将海水中的铀全部提取出来,所含的裂变能可保证人类几万年的能源需要。不过,海水中含铀的浓度很低,1000吨海水只含有3克铀。只有先把铀从海水中提取出来,才能应用。而要从海水中提取铀,从技术上讲是件十分困难的事情,需要处理大量海水,技术工艺十分复杂。但是,人们已经试验了很多种海水提铀的办法,如吸附法、共沉法、气泡分离法以及藻类生物浓缩法等。60年代起,日本、英国、联邦德国等先后着手研究从海水中提取铀,并且逐渐建立了从海水中提取铀的多种方法。其中,以水合氧化钛吸附剂为基础的无机吸附方法的研究进展最快。目前,评估海水提铀可行性的依据之一是一种采用高分子粘合剂和水合氧化钻制成的复合型钛吸附剂。现在海水提铀已从基础研究转向开发应用研究的阶段。日本已建成年产10千克铀的中试工厂,一些沿海国家也计划建造百吨级甚至千吨级工业规模的海水提铀厂。经合组织核能机构(OECD/NEA)和国际原子能机构(IAEA)近日联合出版了((2009年铀:资源、生产和需求(即“铀红皮书”)。新版铀红皮书显示,全球铀资源、产量和需求均在上涨。由于目前预计核能将在未来数年内获得相当大的发展,一些国家加大了对铀矿勘探的投入。数据显示,在总查明资源量增加的同时,生产成本也增加了。新版铀红皮书中的铀资源数据(截止到2009年1月1日)显示,全球查明铀资源总量达到630.63万tU,I:[52007年增加约I5%,其中包括那些自20世纪80年代以来首次被纳入统计的高成本资源(260美元/kgU或lO0美元/lbUO)。按照2008年的铀消耗速度计算,查明资源总量足够全球核工业使用100多年。即使在核电高增长的预测情景中,全球铀消耗量~1J2035年也达不到新版红皮书提及的查明资源的一半。随着铀需求的增长,如何能以环境可持续的方式及时开发铀矿将是核工业一直需要面对的一个问题。要想在一个能够满足未来铀需求的时间框架内开发这些资源,必须有一个强有力的市场。如果现有的铀矿增产计划以及新铀矿建设计划都能如预期的一样顺利进行,则核电高增长预测情景中的全球铀需求在2l世纪20年代后期之前可以得到满足。然而,考虑到铀矿增产计划和新铀矿建设计划所面临的挑战和建设周期,预计的产量增加未必能够全部按期实现。因此,二次供应将是必不可少的,而且应该尽可能通过降低浓缩设施尾料丰度以及发展燃料循环技术,节省铀消耗量。需要指出的是,对供求形势的预测依据的是当前的技术水平,应该认识到,先进反应堆和燃料循环技术的推广应用可以提高铀的利用率,甚至可能将铀资源的利用期限延长到数千年。核电站现状根据日本核能产业协会《世界核能发电开发现状》报道,截止2010年1月,全球38个国家和地区共拥有核能发电机组432台(合计输出功率为3.8916亿kW),其中,美国104台,日本54台,俄罗斯27台,韩国20台,印度17台,中国ll台。若包括在建的和确定要建的140台,全球将拥有核能发电机组572台(合计输出功率为5.289亿kW)。在建的66台中,中国和俄罗斯合计占一半左右,其次是韩国和印度。另外,在计划要建的核能发电机组中,日本l2台,中国lO台,美国和印度均为8台。届时,核能发电机组数量及输出功率目前排名第l1位的中国将超过俄罗斯,位于第4位(拥有核能发电机组47台,输出功率为4758万千瓦)。另外,阿联酋、印度尼西亚和越南各计划建立四台核能发电机组。包括新兴国家在内,全球核能发电机组的安装计划正在积极进行中,核能发电设备的竞标也异常激烈。2010年7月21日,由中核集团中国原子能科学研究院自主研发的中国第一座快中子反应堆——中国实验快堆fCEFR)达到首次临界。这是中国核能领域的重大自主创新成果,标着中国快堆技术实现了重大突破。由此,中国成为世界上少数几个掌握快堆技术的国家之一。快中子反应堆形成的核燃料闭合式循环,可使铀资源利用率提高至60%以上,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。国际社会普遍认为,发展和推广快堆,对于解决世界能源的可持续发展和绿色发展问题具有重大价值。关于核电站的污染问题及治理核裂变可产生电离辐射,电离辐射,就是由能通过初级过程或次级过程引起电离的带电粒子或不带电粒子组成的,或者由它们两者混合组成的辐射。电离辐射能引起细胞化学平衡的改变,某些改变会引起癌变。电离辐射能引起体内细胞中遗传物质DNA的损伤,这种影响甚至可能传到下一代,导致新生一代畸形,先天白血病⋯在大量辐射的照射F,能在几小时或几天内引起病变,或是导致死亡。在核电站去污是为了:降低放射性照射量、回收利用旧设备和旧材料、减少需要送往拥有许可证得埋藏设施内处置的设备和材料的体积、使场地和设施或局部恢复到不受限制使用的状态、去除松散的放射性污染物和将残留的污染物固定在远处,以便为监护封存或永久处置活动做好准备、为了公众的健康和安全或缩短监护封存期而降低监护封存中的残余放射源数量。目前,国内外针对核电站金属设备表面的清洗净化,主要有喷砂清洗、超声波清洗、干冰清洗、化学清洗以及电化学清洗等方法。总的看来,国内常用的喷砂清洗、干冰清洗、超声波清洗、化学清洗方法都存在诸如去污因子低、处理温度高、处理时间长、处理时产生的放射性污水多等缺点。电化学清洗方法具有去污因子高、处理温度低、处理时间长、处理时产生的废水少等特点,是一项有望取代传统化学清洗方法的新技术。对未来的展望——可控核聚变轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。由于原子核间有很强的静电排斥力,因此在一般的温度和压力下,很难发生聚变反应。而在太阳等恒星内部,压力和温度都极高,所以就使得轻核有了足够的动能克服静电斥力而发生持续的聚变。自持的核聚变反应必须在极高的压力和温度下进行,故称为热核聚变反应。氢弹是利用氘、氚原子核的聚变反应瞬间释放巨大能量这一原理制成的,但它释放能量有着不可控性,所以有时造成了极大的杀伤破坏作用。目前正在研制的受控热核聚变反应装置也是应用了轻核聚变原理,由于这种热核反应是人工控制的,因此可用作能源。氘和氚都是氢的同位素。它们的原子核可以在一定的条件下,互相碰撞聚合成较重的原子核--氦核,同时释放巨大的核能。一个碳原子完全燃烧生成二氧化碳时,只放出4电子伏特的能量,而氘-氚反应时能放出1780万电子伏特的能量。据计算,1公斤氢/燃料,至少可以抵得上4公斤铀燃料或l万吨优质煤燃料。每升海水中含有0.03克氘。这0.03克氘聚变时释放出采的能量相当于300升汽油燃烧的能量。海水的总体积为13.7亿立方公里,共含有几亿亿公斤的氘。这些氘的聚变所释放出的能量,足以保证人类上百亿年的能源消耗。而且氘的提取方法简便,成本较低,核聚变堆的运行也是十分安全的。因此,以海水中的氘、氚的核聚变能解决人类未来的能源需要'将展示出最好的前景。氘-氚的核聚变反应,需要在上千万度乃至上亿度的高温条件下进行。这样的反应,已经在氢弹上得以实现。用于生产目的的受控热核聚变在技术上还有许多难题。但是,随着科学技术的进步,这些难题正在逐步解决的。1991年11月9日,由l4个欧洲国家合资,在欧洲联合环型核裂变装置上,成功地进行了首次氘-氚受控核聚变试验,发出了1.8兆瓦电力的聚变能量,持续时间为2秒,温度高达3亿度,比太阳内部的温度还高20倍。核聚变比核裂变产生的能量效应要高600倍,比煤高1000万倍。因此,科学家们认为,氘-氚受控核聚变的试验成功,是人类开发新能源的一个里程碑。在下个世纪,核聚变技术和海洋氘、氚提取技术将会有重大突破。这两项技术的发展和不断的成熟,将对人类社会的进步产生重大的影响。“受控核聚变能产生如同太阳内部的环境.这一目标很久以来就被认为可能是一项根本性的能源革命。但是.在将强大的激光用于聚变能时.还存在一些疑惑.因为由激光所产生的“等离子体”会阻断聚变的进行。而《科学》杂志上的一篇文章认为,等离子体问题还远不是我们所面对的全部问题。,最近的实验证明,等离子体没有降低黑体辐射空腔吸收入射激光的能力:它吸收了约95%的能量
本文标题:关于核能的调研报告
链接地址:https://www.777doc.com/doc-5291842 .html