您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 四川省内江市2015年中考数学试卷(解析版)
四川省内江市2015年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•内江)9的算术平方根是()A.﹣3B.±3C.3D.考点:算术平方根..分析:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.解答:解:9的算术平方根是3.故选:C.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)(2015•内江)用科学记数法表示0.0000061,结果是()A.6.1×10﹣5B.6.1×10﹣6C.0.61×10﹣5D.61×10﹣7考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:用科学记数法表示0.0000061,结果是6.1×10﹣6.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•内江)如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A.B.C.D.考点:简单组合体的三视图..分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得俯视图为.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)(2015•内江)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10B.C.D.2考点:方差;算术平均数..分析:首先根据算术平均数的概念求出a的值,然后把数据代入方差公式求出数值.解答:解:∵3,a,4,6,7,它们的平均数是5,∴=5,∴a=5,∴s2=[(5﹣3)2+(5﹣5)2+(5﹣4)2+(5﹣6)2+(5﹣7)2]=2.故选D.点评:本题主要考查了方差以及算术平均数的知识,解答本题的关键是根据算术平均数的概念求出a的值,此题难度不大.5.(3分)(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠1考点:函数自变量的取值范围..分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.点评:本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2015•内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.B.C.D.考点:概率公式..分析:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少即可.解答:解:抬头看信号灯时,是黄灯的概率为:5÷(30+25+5)=5÷60=故选:A.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.7.(3分)(2015•内江)下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a考点:同底数幂的除法;合并同类项;同底数幂的乘法..分析:根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、应为a3•a4=a3+4=a7,故本选项错误;C、应为a6÷a3=a6﹣3=a3,故本选项错误;D、4a﹣a=(4﹣1)a=3a,正确.故选D.点评:本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.8.(3分)(2015•内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°考点:等腰三角形的性质;平行线的性质..分析:根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.解答:解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.点评:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.9.(3分)(2015•内江)植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组..分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意可得:,故选D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(3分)(2015•内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°考点:切线的性质..分析:连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.解答:解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.点评:本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.11.(3分)(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.考点:轴对称-最短路线问题;正方形的性质..分析:由于点B与D关于AC对称,所以BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.点评:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,等边三角形的性质,找到点P的位置是解决问题的关键.12.(3分)(2015•内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<16考点:反比例函数与一次函数的交点问题..分析:先根据题意求出A点的坐标,再根据AB=BC=3,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.解答:解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(4,4)时,k=16,因而1≤k≤16.故选:C.点评:本题主要考查了反比例函数,用待定系数法求一次函数的解析式,解此题的关键是理解题意进而求出k的值.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2015•内江)分解因式:2x2y﹣8y=2y(x+2)(x﹣2).考点:提公因式法与公式法的综合运用..专题:常规题型.分析:先提取公因式2y,再对余下的多项式利用平方差公式继续分解.解答:解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(5分)(2015•内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.考点:翻折变换(折叠问题)..分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.解答:解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,在Rt△ABH中,AH==2,∴EF=.故答案为:.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.15.(5分)(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是2.考点:根与系数的关系..分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.解答:解:∵3x2+2x﹣11=0的两个解分别为x1、x2,∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.点评:此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.16.(5分)(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推算步骤)17.(7分)(2015•内江)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..分析:本题涉及绝对值、零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据
本文标题:四川省内江市2015年中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-5292648 .html