您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 数学相似三角形竞赛试题汇集
1第十六讲相似三角形(二)上一讲主要讲述了相似三角形与比例线段之间的关系的计算与证明,本讲主要讲述相似三角形的判定与性质的应用.例1如图2-76所示.△ABC中,AD是∠BAC的平分线.求证:AB∶AC=BD∶DC.分析设法通过添辅助线构造相似三角形,这里应注意利用角平分线产生等角的条件.证过B引BE∥AC,且与AD的延长线交于E.因为AD平分∠BAC,所以∠1=∠2.又因为BE∥AC,所以∠2=∠3.从而∠1=∠3,AB=BE.显然△BDE∽△CDA,所以BE∶AC=BD∶DC,2所以AB∶AC=BD∶DC.说明这个例题在解决相似三角形有关问题中,常起重要作用,可当作一个定理使用.类似的还有一个关于三角形外角分三角形的边成比例的命题,这个命题将在练习中出现,请同学们自己试证.在构造相似三角形的方法中,利用平行线的性质(如内错角相等、同位角相等),将等角“转移”到合适的位置,形成相似三角形是一种常用的方法.例2如图2-77所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.分析利用角平分线分三角形中线段成比例的性质,构造三角形,设法证明△MEF∽△MAB,从而EF∥AB.证过B引BG∥AC交AE的延长线于G,交AM的延长线于H.因为AE是∠BAC的平分线,所以∠BAE=∠CAE.3因为BG∥AC,所以∠CAE=∠G,∠BAE=∠G,所以BA=BG.又BD⊥AG,所以△ABG是等腰三角形,所以∠ABF=∠HBF,从而AB∶BH=AF∶FH.又M是BC边的中点,且BH∥AC,易知ABHC是平行四边形,从而BH=AC,所以AB∶AC=AF∶FH.因为AE是△ABC中∠BAC的平分线,所以AB∶AC=BE∶EC,所以AF∶FH=BE∶EC,即(AM+MF)∶(AM-MF)=(BM+ME)∶(BM-ME)(这是因为ABHC是平行四边形,所以AM=MH及BM=MC.).由合分比定理,上式变为4AM∶MB=FM∶ME.在△MEF与△MAB中,∠EMF=∠AMB,所以△MEF∽△MAB(两个三角形两条边对应成比例,并且夹角相等,那么这两个三角形相似.).所以∠ABM=∠FEM,所以EF∥AB.例3如图2-78所示.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.即可,为此若能设法利用长度分别为AB,BC,CA及l=AB+AC这4条线段,构造一对相似三角形,问题可能解决.5注意到,原△ABC中,已含上述4条线段中的三条,因此,不妨以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似,期望能解决问题.证延长AB至D,使BD=AC(此时,AD=AB+AC),又延长BC至E,使AE=AC,连结ED.下面证明,△ADE∽△ABC.设∠A=α,∠B=2α,∠C=4α,则∠A+∠B+∠C=7α=180°.由作图知,∠ACB是等腰三角形ACE的外角,所以∠ACE=180°-4α=3α,所以∠CAE=180°-3α-3α=7α-6α=α.从而∠EAB=2α=∠EBA,AE=BE.又由作图AE=AC,AE=BD,所以BE=BD,△BDE是等腰三角形,所以∠D=∠BED=α=∠CAB,6所以△ABC∽△DAE,所以例4如图2-79所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.分析要证QH⊥DH,只要证明∠BHQ=∠CHD.由于△PBC是直角三角形,且BH⊥PC,熟知∠PBH=∠PCB,从而∠HBQ=∠HCD,因而△BHQ与△DHC应该相似.证在Rt△PBC中,因为BH⊥PC,所以∠PBC=∠PHB=90°,从而∠PBH=∠PCB.显然,Rt△PBC∽Rt△BHC,所以7由已知,BP=BQ,BC=DC,所以因为∠ABC=∠BCD=90°,所以∠HBQ=∠HCD,所以△HBQ∽△HCD,∠BHQ=∠DHC,∠BHQ+∠QHC=∠DHC+∠QHC.又因为∠BHQ+∠QHC=90°,所以∠QHD=∠QHC+DHC=90°,即DH⊥HQ.例5如图2-80所示.P,Q分别是Rt△ABC两直角边AB,AC上两点,M为斜边BC的中点,且PM⊥QM.求证:PB2+QC2=PM2+QM2.分析与证明若作MD⊥AB于D,ME⊥AC于E,并连接PQ,则PM2+QM2=PQ2=AP2+AQ2.于是求证式等价于PB2+QC2=PA2+QA2,①8等价于PB2-PA2=QA2-QC2.②因为M是BC中点,且MD∥AC,ME∥AB,所以D,E分别是AB,AC的中点,即有AD=BD,AE=CE,②等价于(AD+PD)2-(AD-PD)2=(AE+EQ)2-(AE-EQ)2,③③等价于AD·PD=AE·EQ.④因为ADME是矩形,所以AD=ME,AE=MD,故④等价于ME·PD=MD·EQ.⑤9为此,只要证明△MPD∽△MEQ即可.下面我们来证明这一点.事实上,这两个三角形都是直角三角形,因此,只要再证明有一对锐角相等即可.由于ADME为矩形,所以∠DME=90°=∠PMQ(已知).⑥在⑥的两边都减去一个公共角∠PME,所得差角相等,即∠PMD=∠QME.⑦由⑥,⑦,所以△MPD∽△MEQ.由此⑤成立,自⑤逆上,步步均可逆推,从而①成立,则原命题获证.例6如图2-81所示.△ABC中,E,D是BC边上的两个三等分点,AF=2CF,BF=12厘米.求:FM,MN,BN的长.解取AF的中点G,连接DF,EG.由平行线等分线段定理的逆定理知DF∥EG∥BA,所以10△CFD∽△CAB,△MFD∽△MBA.所以MB=3MF,从而BF=4FM=12,所以FM=3(厘米).又在△BDF中,E是BD的中点,且EH∥DF,所以因为EH∥AB,所以△NEH∽△NAB,从而显然,H是BF的中点,所以故所求的三条线段长分别为11练习十六1.如图2-82所示.在△ABC中,AD是∠BAC的外角∠CAE的平分线.求证:AB∶AC=BD∶DC.2.如图2-83所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.3.如图2-84所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:12PB2=PA·PC.(提示:设法证明△PAB∽△PBC.)4.如图2-85所示.D是等腰直角三角形ABC的直角边BC的中点,E在斜边AB上,且AE∶EB=2∶1.求证:CE⊥AD.5.如图2-86所示.Rt△ABC中,∠A=90°,AD⊥BC于D,P为AD的中点,延长BP交AC于E,过E作EF⊥BC于F.求证:EF2=AE·EC.6.在△ABC中,E,F是BC边上的两个三等分点,BM是AC边上的中线,AE,AF分别与BM交于D,G.求:BD∶DG∶GM.
本文标题:数学相似三角形竞赛试题汇集
链接地址:https://www.777doc.com/doc-5313166 .html