您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高分子材料疲劳研究进展-武艳霞
36 6200511 JOURNALOFTAIYUANUNIVERSITYOFTECHNOLOGY Vol.36No.6 Nov.2005 :1007-9432(2005)06-0654-04高分子材料疲劳研究进展武艳霞,陈维毅(,030024) :从疲劳失效过程、循环变形、疲劳裂纹扩展、损伤力学四个方面综述了高分子材料涉及粘弹性性质的最新的疲劳文献,在此基础上阐明了高分子材料疲劳研究亟待解决的问题。:高分子材料;疲劳损伤;银纹;剪切带;粘弹性:O346.2 :A 、、。(),。,。,。,。:;;Worler,。S.Suresh,1995。,,。,Par-is。,,。、,。。,,Hertzberg、Brown,。,、[2]、[3]。4、,1995。1 疲劳失效过程HH.Kausch1987[4],,:、;,、、、;(),,、、。,———:(),,。,,(),(),,,,()()[5]。、:,,,,;,,,:2005-09-10 :(1966-),,,、,(Tel)0351-6014903,,,,,,,,,,[6];、,,,,,。,、、,,[7]、[8]、“ε”[9],。[1]。2 循环变形DavidJ.,,,,[10]。MeyerRW,UHMWPE、,SEM、FEM,。。[11]。3 疲劳裂纹扩展,Pruitt1998、、UHMWPE[12]。,V.Favier,,Paris,0.25(MPam12),,,;0.25(MPam12),,[13]。:σc,μE,dadN=B(ΔK-ΔKth)2.:B=1/(2πEσbδm),σbδm[6]。PMMA:,,0.1Hz20Hz,;,,,。,,。,β[14]。,。,,。。G.C.Pulos,()、。,;,。,,;,,;,,,[15]。M.Parsons,,,da/dt=B[K4I(t)]Tβ(ε),ε=fδmax-δminδmin.,B(K4I(t))T;δ[16]。Y.HU。655 6 :Paris,,dadt=BK2.7Imax(1+Cε).,B。B,[17]。/、。,/,;,。,/[18]。RiddellMN2060,[19,20]。Hiroshi,,。,WM=∫2π/ω0σdγdtdt;WT=1tf∫tf0ρCPdTdt+U(T(t)-TC)AVdt.:σ,γ,ω,tf,U,T,TC,A,V、、、、、、、、[21]。ConstableI,,,,,,,,,,[22];,D.RittelPC、PMMA、(PMMA_REF)(PMMA_MOD),PC,,,。PC、,[23,24]。4 疲劳损伤变量与疲劳损伤模型,。R.MarissenABS。,;,;Izod,,。3[25]。,B.Wang,,PC,。[26]。BaiSLHDPE,[27]。,,,。,,,,、,[29]。5 结语,:;,:、、;,、。,、,;,,、、;,,。、,、、656 36 ,,,,。:[1] .()[M].:,1999.[2] MansonJA,HertzbergRW.Commentonamodeloffatiguecrackgrowthinpolymers[J].JMaterSci,1979(14):1754-1758.[3] HertzbergRW,MansonJA.FatigueofEngineeringPlastics[M].NewYork:AcademicPress,1980:83.[4] .[J].,1999,25(4):451-470.[5] .[M].:,1988.[6] ,,.[J].,2001,20(1):37-38.[7] HertzbergRW,SkiboMD.FatiguefracturemechanismsinengineeringPlastics[A].SpecialTechnicalPublication675,Philadelphia.Americansocietyfortestingandmaterials,InfatigueMechanisms.1979.[8] Skibo.Fatiguefractureprocessinpolystyrene[J].Journalofmaterialsscienceandengineering,1977,36:17-25.[9] Mills,Walker.Fatiguecrackinitiationinglassyplasticsinhighstrainfatiguetest[J].Journalofmaterialsscience,1980,18(15):32-40.[10] DavidJKrzypow,ClareMRimnac.Cyclicsteadystatestress-strainbehaviorofUHMWpolyethylene[J].Biomaterials,2000(21):2081-2087.[11] MeyerRW,PruittLA.Theeffectofcyclictruestrainonthemorphology,structure,andrelaxationbehaviorofultrahighmolecularweightpolyethylene[J].Polymer,2001,42(5):293-306.[12] LPruitt,LBailey.Factorsaffectingnear-thresholdfatiguecrackpropagationbehavioroforthopedicgradeultrahighmolecu-larweightpolyethylene[J].Polymer,1998,39(8-9):1545-1553.[13] FavierV.Slowcrackpropagationinpolyethyleneunderfatigueatcontrolledstressintensity[J].Polymer,2002(43):1375-1382.[14] .[J].,2000,16(6):121-123.[15] PulosGC.NonsteadycrackandcrazebehaviorinPMMAundercyclicalloading[J].InternationalJournalofFracture,1998,93:145-207.[16] MPARSONS.Effectofstrainrateonstepwisefatigueandcreepslowcrackgrowthinhighdensitypolyethylene[J].Journalofmaterialsscience,2000(35):1857-1866.[17] HUY.Correlationoffatigueandcreepcrackgrowthinpoly(vinylchloride[J].Journalofmaterialsscience,2003(38):633-642.[18] ./[J].,2003,19(1):188-191.[19] RiddellMN,KooGP,O'TooleJL.Fatiguemechanismsofthermoplastics[J].PolymEngngSci,1966(36):3-8.[20] KooGP.Fatiguepropertiesofpolytetrafluoroethyleneandrelatedfluoropolymers[J].Polymerengineeringandscience,7,182-188.[21] HiroshiHachiya,ShigekiTakayama,KunihikoTakeda.Effectofinterfaceentanglementonfatiguelifeofpolymeralloyandcomposites[J].CompositeInterfaces,1999,6(3):187-200.[22] ConstableI,WilliamsJG,BurnsDJ.Fatigueandthermalsofteningofthermoplastics[J].JMechEngngSci,1970,12(1):20-9.[23] RittelD,Rabin.Aninvestigationoftheheatgeneratedduringcyclicloadingoftwoglassypolymers[J].MechMater,2000,32(3):131-147;149-159.[24] RittelD.Hystereticheatingofmodifiedpoly(methylmethacrylate)[J].Polymer,2003(44):2817-2822.[25] ABSRMARISSEN.Theeffectofmaterialdefectsonthefatiguebehaviorandthefracturestrain[J].Journalofmaterialssci-ence,2001(36):4167-4180.[26] WangB,LuH.Strengthofdamagedpolycarbonateafterfatigue[J].TheoreticalandAppliedFractureMechanics,2003(39):163-168.[27] BaiSL,LiuZD,JuY.Damagetorigid-particle-filledpolymerundercyclictension[J].PolymInt,2001,50:973-9.[28] .[J].,2000,24(5):1-4.[29] ,,.[J].,2002,36(5):90-93.(662)657 6 :Fig.6 Displacementvs.timeandspaceforp=1.11)For8.217×106≤η8.47×106N/m,allthepointsofthebarmoveharmonicallywithspa-tialstructureasbreathersuperimposingontheflatstate. 2)Intherangeof8.47×106η9.383×106N/m,everypointmovesquasi-periodically. 3)WhentheamplitudeofP-Nforceisbe-tween9.383×106η1.030×107N/m,chaoticeffectoccurs.4)For1.030×107η1.1×107N/m,alltheparticlesofthebarmovesynchronouslywithfrequencylockedtotheperturbationwhichisjustsimilartothecasewhenP-Nforceisverysmallorverylarge.5)Asfor1.1×107η1.182×107N/m,re-sponseofthebarissimilartocase1).It'sfoundthatP-Nforceisalsoanimportantfactorinaffect-ingthemotionofthissystem.REFERENCES:[1] MeyersMA,ChawlaKK.MechanicalMetallurgy[M].PrenticeHallInc,1983.[2] ShuXF,YangGT.Theinfluenceofmaterialpropertiesondynamicbehaviorofstructures[C].SenooMEd,ProceedingsofIMMM'97.1997,279-284.[3] BishopAR,FesserK,LomdahlPS,etal.Influenc
本文标题:高分子材料疲劳研究进展-武艳霞
链接地址:https://www.777doc.com/doc-5319742 .html