您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 多尺度分析方法中四种典型小波基的选择与比较
:2001-10-21:1005-3751(2002)03-0041-04SelectionandComparisonofFourTypicalWaveletBasesintheMultiresolutionAnalysis1,2(1.四川大学计算机学院,四川成都610064;2.中国工程物理研究院结构力学所,四川绵阳621900)HUMin1,CHENQianghong2(1.ComputerScienceCollege,SichuanUniversity,ChengduSC610064,China;2.InstituteofStructuralMechanics,CAEP,MianyangSC621900,China):,:;;;Abstract:Withcomparisonandanalysisintheselectionoffourtypicalwaveletbasesinpracticalapplication,thispaperdiscussedsuchselectionwhenweadoptMulti-ResolutionAnalysistodothewaveletbasedimagecompressionandtheinfluenceoftheborderprocessingontheselection.Keywords:multi-resolutionanalysis;waveletbasis;borderprocessing;imagecompression:TP391:A1,,JPEG,!,()A.Haar30Haar,,,ShannonShannon,,80,Meyer,Daubechies1988,S.MallatShannon,(Multi-ResolutionAnalysis,MRA)[1]2L2,L2,,,L2,,{Vj}j∀z:(1);(2);(3);(4)Riesz,:Sm(n)=#kh(k-2n)Sm-1(k)Cm(n)=#kg(k-2n)Sm-1(k)h(n)g(n),m:[2]Sm-1(k)=#nh(k-2n)Sm(n)+#ng(k-2n)Cm(n),,,,xy2,,,:,,,,,PSNR,,412002333.15,QMFQMF,4:(1)I.Daubechies4-;(2)I.Daubechies20-[3];(3)Brislawn[4];(4)Antonini[5];5∃正交性L2(R2),,[6]1:1I.Daubechies4I.Daubechies20BrislawnAntonini%对称性,,,,([5]2:2I.Daubechies4I.Daubechies20BrislawnAntonini,Haar,[7]&紧支集,h(n),g(n);,3:3I.Daubechies4I.Daubechies20BrislawnAntoniniBrislawn,,,PSNRDaubechies∋正则性(光滑度),,,[8]4:4I.Daubechies4I.Daubechies20BrislawnAntonini0.52.91.01.4,4,Daubechies20,Antonini(消失矩问题,[8],()5:5I.Daubechies4I.Daubechies20BrislawnAntonini21014,,Daubechies20,Antonini5,Antonini,BrislawnDaubechies203.2,,,,(:)(:)[8],,,,,,4220023,,,,,,,4Lena512)512,6-9:616PSNRI.Daubechies4I.Daubechies20BrislawnAntonini34.147120.974236.075136.074334.627535.114835.824235.8246732PSNRI.Daubechies4I.Daubechies20BrislawnAntonini31.480920.840233.147733.146931.572632.034732.653232.6526864PSNRI.Daubechies4I.Daubechies20BrislawnAntonini29.051320.617630.330630.330128.869229.351529.806929.80679128PSNRI.Daubechies4I.Daubechies20BrislawnAntonini26.727320.269327.806227.805926.559326.982827.252827.2529,Daubechies420,PSNRAntoniniBrislawn,Daubechies-20,Daubechies-208,Lena,BrislawnAntoniniDaubechies,BrislawnAntoniniPSNR,,BrislawnAntonini,5,,,,,,,,AntoniniLena256(1-4),:,,,[8],,,4320023:2001-11-05:(1968),,,,::1005-3751(2002)03-0044-03TheResearchandDesignoftheDistributedDynamicRequestMechanism(黔东南民族高等师范专科学校计算机系,贵州凯里556000)ZHANGXiaomei(ComputerDepartmentofQianDongNanHigherNormalCollege,KailiGZ556000,China):CORBA,:;;(DII);(DSI)Abstract:BasedonDynamicRequestframedefinedinCORBA,webringforwardthearchitectureofDistributedDynamicRequestMechanism,basicflowchartandinvocationmodeinthispaper.Keywords:CORBA;distributeddynamicrequest;dynamicinvocationinterface;dynamicskeletoninterface:TP311:A1DIIDSICORBA,:,OMGIDL(InterfaceDefinitionLanguage),IDL,,,,,CORBA∗DII(DynamicInvocationInterface):,IDL,,DII;DII∗DSI(DynamicSkeletonInterface):DII,DIIDSIORBCORBACORBA:(Gateway),DIIDSI,,,,,,:[1],.[M].:,1994.[2]S.G.Mallat.ATheoryforMultiresolutionsignalDecomposition[J].IEEETrans.onPAMI,1989,11(7):674-693.[3]I.Daubechies.TenlectureonWavelets[M].Philadelphies:CapitalcityPress,1992.[4]J.Bradley,C.Brislawn,andT.Hopper,TheFBIWavelet/ScalarQuantizationStandardforGray-scaleFingerprintImageCompression[J].Tech.ReportLA-UR-93-1659LosAlamosNat+lLab,LosAlamos,N.M.1993.SeealsoC.Brislawn+s://~brislawn/main.html[OL].[5]M.Antonini,etal.Imagecodingusingwavelettransforms[J].IEEETrans.onImageProcessing,1992,1(2):205-220.[6].[M].:,1995.[7].[M].:,1998,(5):108-112.[8].[M].:,1997,(8):161-166,247-248.4420023
本文标题:多尺度分析方法中四种典型小波基的选择与比较
链接地址:https://www.777doc.com/doc-5323399 .html