您好,欢迎访问三七文档
注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。习题6—1用积分法求解图示各梁的弯曲变形时,应分几段积分?将出现几个积分常数?相应的边界条件和连续条件是什么?(b)图中的梁右端支于弹簧上,其弹簧常效为K(即引起单位长度变形所需的力)。(d)图中拉杆BC的面积为A,材料的弹性模量为E。解:(a)应分三段积分,将出现6个积分常数右左右左右左右左BBBBCCCCAyyyyy,,,,0(b)应分两段积分,将出现4个积分常数右左右左CCCCBBAyycRyy,,,0(c)应分两段积分,将出现4个积分常数右左右左CCCCAAyyy,,0,0(d)只分一段积分,将出现2个积分常数EAlRyyBBA,06—2用积分法求图示各梁:(1)挠曲线方程;(2)自由端的挠度和转角。设EI为常数。(b)(a)(d)(c)(a)解:取坐标如图,则222121)(qlqlxqxxM222121qlqlxqxyEICxqlqlxqxyEI223212161DCxxqlqlxqxEIy223441612410,0CyEIx0,0,DEIyx22344161241xqlEIqlxEIqxEIyEIqllyyB8)(4EIqllB6)(3(b)(b)(d)(a)(c)(b)(a)解:坐标如图AC:axFxxM1110,)(CB:axaxFFxxM20,)()(2222AC:11FxyEI121121CFxyEI11131161DxCFxEIyCB:)(222axFFxyEI222222)(2121CaxFFxyEI21232322)(6161DxCaxFFxEIyax时:)()(21ayEIayEI,则21CC)()(21aEIyaEIy,则21DDax2时:0)(2ayEI,则2522FaC0)(2aEIy,则2732FaD)0(,272561312311axFaxFaFxEIy)20(,2725)(616132232322axFaxFaaxFFxEIyEIFayA27)0(3EIFaA25)0(2(c)(c)解:AC:20,)43(2)(111lxxlqlxMCB:lxlxlqxM22222,)(2)(AC:)43(211xlqlyEI1211)43(4CxlqlyEI111311)43(12DxCxlqlEIyCB:222)(2xlqyEI2322)(6CxlqyEI222422)(24DxCxlqEIy,0)0(1yEI则64931qlC0)0(1EIy,则256941qlD)2()2(21lyEIlyEI,则48732qlC)2()2(21lEIylEIy,则128542qlDEIqllyyB38441)(42EIqllyB487)(32(d)解:AC:20,)2(2)(2)(12111lxxlqxlqlxM(d)CB:lxlxlqlxM2222,)(2)(AC:2111)2(2)(2xlqxlqlyEI131211)2(6)(4CxlqxlqlyEI1114111)2(24)(21DxCxlqxlqlEIyCB:)(222xlqlyEI2222)(4CxlqlyEI222322)(12DxCxlqlEIy,0)0(1yEI则841331qlC0)0(1EIy,则3843341qlD)2()2(21lyEIlyEI,则12CC)2()2(21lEIylEIy,则12DD20,384334813)2(24)(2114134111lxqlxqlxlqxlqlEIylxlqlxqlxlqlEIy24233222,384334813)(12EIqllyyB38471)(42EIqllyB4813)(326—3用积分法求图示各梁,(1)挠曲线方程;(2)端截面转角A和B;(3)跨度中点的挠度和最大挠度。设EI为常数。(a)解:xlMxMlMRRBAee)(,DCxxlMEIyCxlMyEIxlMyEI3e2ee6,2,,0)0(EIy则0D,0)(lEIy则6lMCe)(622lxEIlxMyeEIlMlyEIlMyeBeA3)(,6)0(EIlMlye16)2(2lxyEI33,0时EIlMye2732max(b)(a)(d)(c)(a)(b)解:结构及载荷对称,故只需研究ADqaRRBAAC:axqaxxM1110,)(CD:axaaxqqaxxM2,)(21)(22222AC:11131112111161,21,DxCqaxEIyCqaxyEIqaxyEICD:2322222222)(6121,)(21CaxqqaxyEIaxqqaxyEI22242322)(24161DxCaxqqaxEIy,0)0(1EIy则01D,0)2(,2ayEI则32611qaC,)()(21ayEIayEI则21CC,)()(,21aEIyaEIy则12DDaxaxEIqaxy0,)11(6221axaxaaxaxRIqy2,44)(4243432EIqayBA611)0(31EIqaayyy819)2(42max0(c)(b)(c)解:xlqxqlqRlqRBA000)(,31,6130020666)(6)(xlqxlqxxqxlqxM30066xlqxlqyEICxlxlqyEI)412(6420DCxxlxlqEIy)2016(6530,0)0(EIy则0D,0)(,lEIy则360730lqC)7310(36045320xlxxlEIlqyEIlqlyEIlqyBA45)(,3607)0(3030EIlqly7685)2(40,0yEI即03607)42(630420lqlxxlq0730154224lxlxlx5196.0时EIlqlyy76801.5)5196.0(40max(d)(d)解:qlRqaRBA8183,AC:20,2183)(12111lxqxqlxxMCB:lxlxlqlxM2222,)(81)(AC:111413111312112111241483,61163,2183DxCqxqlxEIyCqxqlxyEIqxqlxyEICB:222322222222)(481,)(161,)(81DxCxlqlEIyCxlqlyEIxlqlyEI,0)0(1EIy则01D,0)(,2lyEI则lCD22①,)2()2(21lyEIlyEI则24312qlCC②,)2()2(21lEIylEIy则384224122qlClDCl③联立①②③,得3847,3847,3849423231qlDqlCqlC20,128324116111341311lxxqlqxqlxEIylxlqlxqlxlqlEIy24233222,38473847)(481EIqalyEIqayBA3847)(,1283)0(3231EIqllylyyC7685)2()2(421,0yEI即038496116333121qlqxxql09647233121lxlx09726432131llxxlx4598.0时EIqalyy76804.5)4598.0(42max6—4用积分法求图示各梁:(1)挠度方程和转角方程;(2)外伸端的挠度和转角。设EI为常数.(a)解:FlalRFlaRBA,AB:lxFxlaxM1110,)(BC:alxlFxalxM222,)()(AB:1113111211116,2,DxCFxlaEIyCFxlayEIFxlayEIBC:222322222222)(61,)(21,)(DxCFxalEIyCFxalyEIFxalyEI,0)0(1EIy则01D,0)(,1lEIy则61FalC,)()(21lyEIlyEI则6)32(2alFaC,0)(,2lEIy则6)32(222alalFaDlxxEIFalFxlEIay0,661311alxlEIalalFaxEIalFaxalEIFy,6)32(6)32()(6222322EIalFaalyyC3)()(22EIalFaalyC6)32()(2(a)(b)(a)(b)解:lMRRBAeAB:lxxlMxMe1110,)(BC:alxlMxMe22,)(AB:1113111211116,2,DxCxlMEIyCxlMyEIxlMyEIeeeBC:222222222221,,DxCxMEIyCxMyEIMyEIeee,0)0(1EIy则01D,0)(,1lEIy则61lMCe,)()(21lyEIlyEI则322lMCe,0)(,2lEIy则622lMDelxxEIlMxlEIMyee0,661311alxlEIlMxEIlMxMEIyeee,6322122222EIalaMalyyeC6)32()(2EIalMalyeC3)3()(2(b)6—5如图所示,用积分法求梁的最大挠度和最大转角。EI为已知(提示:在图(b),(d)中,梁对跨度中点对称,可以只考虑梁的1/2)。(a)解:AC:20,)()(111lxxlFxMCB:lxlxlFxM2222,)()(AC:111311121111)(62,)(22,)(2DxCxlFEIyCxlFyEIxlFyEICB:222312222222)(6,)(2,)(DxCxlFEIyCxlFyEIxlFyEI,0)0(21yEI则221FlC,0)0(2,1EIy则631FlD,)2()2(21lyEIlyEI则16522FlC,)2()2(,21lEIylEIy则832FlDEIFllyyyB163)(32maxEIFllyB165)(22max(a)(c)(b)(d)(a)(b)解:由于对称,只研究二分之一梁2FRRBA2440,2)(21lxllxxFxM11131112111112,4,2DxCxFEIyCxFyEIxFyEI222322222222122,42,22DxCxFEIyCxFyEIxFyEI,0)0(1EIy则01D,0)2(2,2lyEI则1622FlC,)4()4(21lyEIlyEI则128521FlC,)4()4(,21lEIylEIy则768232FlDEIFllyyyC2563)2(32maxEIFly1285)0(21max(c)解
本文标题:第六章--弯曲变形
链接地址:https://www.777doc.com/doc-5339327 .html