您好,欢迎访问三七文档
数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差_N(1,0.5)__;2、设为取自总体的一个样本,若已知,则=_0.01;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为___t(n-1)S*/n0.5_____;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。1、;2、0.01;3、;4、;5、。二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为(B)。(A)(B)(C)(D)2、设为取自总体的样本,为样本均值,,则服从自由度为的分布的统计量为(D)。(A)(B)(C)(D)3、设是来自总体的样本,存在,,则(C)。(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为(A)。(A)(B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平时,检验假设的结果是(B)。(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B.三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。解:(1),令,得为参数的矩估计量。(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为。四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0.95的置信区间;(,)。解:(1)的置信水平为0.95的置信区间为,即为(0.9462,6.6667);(2)=;由于是的单调减少函数,置信区间为,即为(0.3000,2.1137)。五、(本题10分)设总体服从参数为的指数分布,其中未知,为取自总体的样本,若已知,求:(1)的置信水平为的单侧置信下限;(2)某种元件的寿命(单位:h)服从上述指数分布,现从中抽得容量为16的样本,测得样本均值为5010(h),试求元件的平均寿命的置信水平为0.90的单侧置信下限。。解:(1)即的单侧置信下限为;(2)。六、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度,今阶段性抽取10个水样,测得平均浓度为10.8(mg/L),标准差为1.2(mg/L),问该工厂生产是否正常?()解:(1)检验假设H0:2=1,H1:2≠1;取统计量:;拒绝域为:2≤=2.70或2≥=19.023,经计算:,由于2,故接受H0,即可以认为排出的污水中动植物油浓度的方差为2=1。(2)检验假设;取统计量:~;拒绝域为;2.2622,所以接受,即可以认为排出的污水中动植物油的平均浓度是10(mg/L)。综上,认为工厂生产正常。七、(本题10分)设为取自总体的样本,对假设检验问题,(1)在显著性水平0.05下求拒绝域;(2)若=6,求上述检验所犯的第二类错误的概率。解:(1)拒绝域为;(2)由(1)解得接受域为(1.08,8.92),当=6时,接受的概率为。八、(本题8分)设随机变量服从自由度为的分布,(1)证明:随机变量服从自由度为的分布;(2)若,且,求的值。证明:因为,由分布的定义可令,其中,与相互独立,所以。当时,与服从自由度为的分布,故有,从而。数理统计试卷参考答案一、填空题(本题15分,每题3分)1、;2、0.01;3、;4、;5、。二、选择题(本题15分,每题3分)1、B;2、D;3、C;4、A;5、B.三、(本题14分)解:(1),令,得为参数的矩估计量。(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为。四、(本题14分)解:(1)的置信水平为0.95的置信区间为,即为(0.9462,6.6667);(2)=;由于是的单调减少函数,置信区间为,即为(0.3000,2.1137)。五、(本题10分)解:(1)即的单侧置信下限为;(2)。六、(本题14分)解:(1)检验假设H0:2=1,H1:2≠1;取统计量:;拒绝域为:2≤=2.70或2≥=19.023,经计算:,由于2,故接受H0,即可以认为排出的污水中动植物油浓度的方差为2=1。(2)检验假设;取统计量:~;拒绝域为;2.2622,所以接受,即可以认为排出的污水中动植物油的平均浓度是10(mg/L)。综上,认为工厂生产正常。七、(本题10分)解:(1)拒绝域为;(2)由(1)解得接受域为(1.08,8.92),当=6时,接受的概率为。八、(本题8分)证明:因为,由分布的定义可令,其中,与相互独立,所以。当时,与服从自由度为的分布,故有,从而。
本文标题:数理统计考试试卷
链接地址:https://www.777doc.com/doc-5342463 .html