您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 三相全控整流用电路设计
三相桥式整流电路摘要:本文主要介绍三相桥式全控整流电路的主电路和触发电路的原理及控制电路图,由工频三相电压380V经升压变压器后由SCR(可控硅)再整流为直流供负载用。但是由于工艺要求大功率,大电流,高电压,因此控制比较复杂,特别是触发电路部分必须一一对应,否则输出的电压波动大甚至还有可能短路造成设备损坏。本电路图主要由芯片C8051-F020微控制器来控制并在不同的时刻发出不同的脉冲信号去控制6个SCR。在负载端取出整流电压,负载电流到C8051-F020模拟口,然后由MCU处理后发出信号控制SCR的导通角的大小。在本课题设计开发过程中,我们使用KEIL-C开发软件,C8051开发系统及PROTEL-99,并最终实现电路改造设计,并达到预期的效果。关键词:电力电子、三相、整流目录摘要…………………………………………………………………………………11、设计任务书………………………………………………………………………32、设计方案…………………………………………………………………………33、主电路图…………………………………………………………………………44、驱动电路和保护电图……………………………………………………………45、电路参数计算和元器件选择清单………………………………………………66、主电路和驱动电路的原理分析………………………………………………87、主要节点电压和波形…………………………………………………………138、参考文献………………………………………………………………………151设计任务书1.将三相380V交流电源通过三相桥式全控整流电路变成可调的直流电压2.进行方案比较,并选定设计方案3.完成主电路设计,各主要器件的选择4.驱动电路和保护电路设计,各主要器件的选择5.绘制控制角度为3060度时电路中主要节点电压和电流波形6.负载为阻感负载三相星型连接L=300mH,R=500Ω2设计方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。结构框图如下图所示。整个设计主要分为主电路、触发电路、保护电路三个部分。框图中没有表明保护电路。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。三相桥式全控整流结构图3主电路图三相全控整流电路总电路图:F?Fuse1F?Fuse1F?Fuse1F?Fuse1F?Fuse1F?Fuse1Q?SCRQ?SCRQ?SCRQ?SCRQ?SCRQ?SCR10mHL?Inductor10mHL?Inductor10mHL?Inductor10mHL?Inductor1KR?Res1电源三相桥式全控整流电路直流电动机同步电路集成触发器触发信号触发模块4驱动电路和保护电路图驱动电路图12345678910111213141516KJ00412345678910111213141516*12345678910111213141516KJ00412345678910111213141516KJ004KJ041-15V15VGNDGNDGNDUsaUsbUscabccabefdfedGNDVT1VT2VT3VT4VT5VT6晶闸管保护电路FUVTL串联电感及熔断器抑制回路VTRC并联RC电路阻容吸收回路交流侧保护电路5电路参数计算及元器件选择清单1.基本计算公式当整流输出电压连续时(即带阻感负载时,或带电阻负载a≤60时)的平均值为:cos34.2)(sin63123232dUttdUU带电阻负载且a60时,整流电压平均值为:)3cos(134.2)(sin63232dUttdUU2.整流变压器的选择由系统要求可知,整流变压器一、二次线电压分别为380V和220V,由变压器为Y接法可知变压器二次侧相电压为:VVU12732202(公式1)变比为:0.312738021UUK(公式2﹚变压器一次和二次侧的相电流计算公式为:KIKIdI11﹙公式3﹚dIIKI22﹙公式4﹚而在三相桥式全控中816.03221IIKK﹙公式5﹚AId305﹙公式6﹚所以变压器的容量分别如下:变压器次级容量为:2213IUS﹙公式7﹚变压器初级容量为:1123IUS﹙公式8﹚变压器容量为:221SSS﹙公式9﹚即:kWS46989.920.3816.03053803305816.01273变压器参数归纳如下:初级绕组三角形接法VU3801,AI96.821;次级绕组星形接法,VU1272,AI88.2482;容量选择为9.46989kW。3.晶闸管的选择⑴晶闸管的额定电压由三相全控桥式整流电路的波形(图2-4)分析知,晶闸管最大正、反向电压峰值均为变压器二次线电压峰值26FMRMUUU﹙公式10﹚故桥臂的工作电压幅值为:VUm1.3111276﹙公式11﹚考虑裕量,则额定电压为:VUUmN3.933~2.6221.3113~23~2﹙公式12﹚⑵晶闸管的额定电流晶闸管电流的有效值为:AIIdVT4.34636003max﹙公式13﹚考虑裕量,故晶闸管的额定电流为:AIIVTAVVT30.441~97.33057.14.3462~5.157.12~5.1)(﹙公式14﹚6主电路和驱动电路工作原理分析1.主电路的晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接3个晶闸管分别为VT4、VT6、VT2。如下图,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。带电阻负载时的工作情况晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud=ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。将波形中的一个周期等分为6段,每段为60度,如图下图所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。时段123456共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸VT6VT2VT2VT4VT4VT6管整流输出电压udua-ub=uabua-uc=uacub-uc=ubcub-ua=ubauc-ua=ucauc-ub=ucb由图得:6个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60o;共阴极组和阳极组依次差120o;同一相的上下两个桥臂脉冲相差180o。整流输出电压ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的2个晶闸管均有触发脉冲。为此,可采用两种方法:一种是使脉冲宽度大于60o,称为宽脉冲触发。另一种方法是,在触发某个晶闸管的同时,给序号紧前的一个晶闸管补发脉冲。即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差60o,脉宽一般为20o~30o,称为双脉冲触发。双脉冲电路较复杂,但要求的触发电路输出功率小。宽脉冲触发电路虽可少输出一半脉冲,但为了不使脉冲变压器饱和,需将铁心体积做得较大,绕组匝数较多,导致漏感增大,脉冲前沿不够陡,对于晶闸管串联使用不利,故采用双脉冲触发。α=0o时晶闸管承受的电压波形如图所示。iVT1UVTI图中还给出了晶闸管VT1流过电流iVT的波形,由此波形可以看出,晶闸管一周期中有120o处于通态,240o处于断态,由于负载为电阻,故晶闸管处于通态时的电流波形与相应时段的ud波形相同。当触发角α改变时,电路的工作情况将发生变化。当α=30o时。从ωt1角开始把一个周期等分为6段,每段为60o与α=0o时的情况相比,一周期中ud波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表1的规律。区别在于,晶闸管起始导通时刻推迟了30o,组成ud的每一段线电压因此推迟30o,ud平均值降低。晶闸管电压波形也相应发生变化如图所示。图中同时给出了变压器二次侧a相电流ia的波形,该波形的特点是,在VT1处于通态的120o期间,ia为正,ia波形的形状与同时段的ud波形相同,在VT4处于通态的120o期间,ia波形的形状也与同时段的ud波形相同,但为负值。当α=60o时,电路工作情况仍可参考上图分析,ud波形中每段线电压的波形继续向后移,ud平均值继续降低。α=60o时ud出现了为零的点。由以上分析可见,当α≤60o时,ud波形均连续,对于电阻负载,id波形与ud波形的形状是一样的,也连续。当α>60o时,如α=90o时电阻负载情况下,此时ud波形每60o中有30o为零,这是因为电阻负载时id波形与ud波形一致,一旦ud降至零,id也降至零,流过晶闸管的电流即降至零,晶闸管关断,输出整流电压ud为零,因此ud波形不能出现负值。如果继续增大至120o,整流输出电压ud波形将全为零,其平均值也为零,可见带电阻负载时三相桥式全控整流电路α角的移相范围是120o。阻感负载工作情况三相桥式全控整流电路大多用于向阻感负载和反电动势阻感负载供电(即用于直流电机传动),下面主要分析阻感负载时的情况,对于带反电动势阻感负载的情况,只需在阻感负载的基础上掌握其特点,即可把握其工作情况。当α≤60o时,ud波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压ud波形、晶闸管承受的电压波形等都一样。区别在于负载不同时,同样的整流输出电压加到负载上,得到的负载电流id波形不同,电阻负载时id波形与ud的波形形状一样。而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。在晶闸管VT1导通段,iVT1波形由负载电流id波形决定,和ud波形不同。当α<60o时,阻感负载时的工作情况与电阻负载时不同,电阻负载时ud波形不会出现负的部分,而阻感负载时,由于电感L的作用,ud波形会出现负的部分。若电感L值足够大,ud中正负面积将基本相等,ud平均值近似为零。这表明,带阻感负载时,三相桥式全控整流电路的α角移相范围为90o。2.驱动电路本系统中选择模拟集成触发电路KJ004,KJ004可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。KJ004器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。KJ004电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点
本文标题:三相全控整流用电路设计
链接地址:https://www.777doc.com/doc-5344905 .html