您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 其它相关文档 > 直线与圆的位置关系教学设计13-北师大版〔优秀篇〕
2.5直线和圆的位置关系教学目标:1.知道直线与圆有相交、相切、相离三种位置关系.2.会利用直线与圆的位置关系来进行计算和说理.3.用类比的方法探索直线与圆的位置关系,体会数形结合、分类讨论的数学思想.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心..教学重点:直线与圆的位置关系与对应数量关系的运用.教学难点:直线与圆的位置关系与对应数量关系的探索.教学过程:一、创设情境1.我们在前面学过点和圆的位置关系,请大家回忆一下它们的位置关系有哪些?板书(设计意图:通过类比掌握新知,这是一种重要的数学学习方法)2.如果把点看成一条直线,想象一下直线与圆有哪几种位置关系?二、活动探索活动一.操作、思考1.联系生活中的具体情境,师生共同举例:如(1)自行车在平坦的地面上骑行,把自行车轮胎看成一个圆,平坦的地面看成一条直线(师生共同画出图形)(2)自行车在泥泞的道路上骑行,把自行车轮胎看成一个圆,泥泞的地面看成一条直线(师生共同画出图形)(3)一个圆形的风车在平坦的地面上转动(师生共同画出图形)(设计意图:联系生活,体会数学问题从生活中来,用所学知识解决生活中的问题)2.观察--操作—猜想,得出直线与圆的三种位置关系:(揭示课题)3.在选取其中一个圆,上、下移动直尺.在移动过程中直线与圆的位置关系发生了怎样的变化?你能描述这种变化吗?(公共点个数、圆心到直线的距离)(设计意图:让学生通过观察、操作、猜想等活动,积累基本的数学活动经验)4.板书相关定义a.直线和圆有两个公共点,叫做直线与圆相交b.直线和圆有唯一个公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点c.直线和圆没有公共点时,叫做直线与圆相离活动二.探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系前面复习知道:点和圆的位置关系可以用圆心到点之间的距离,这一数量关系来刻画他们的位置关系;那么直线和圆的位置关系是否也可以用数量关系来刻画他们三种位置关系呢?下面我们一起来研究一下!(在自己所画的图形中观察)如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1、直线与圆相交=dr2、直线与圆相切=d=r3、直线与圆相离=dr你能根据d与r的大小关系确定直线与圆的位置关系吗?(设计意图:类比点与圆的位置关系得出直线与圆的位置关系与某些数量之间的联系)三、概念辨析1.已知⊙O的直径为10cm,点O到直线a的距离为d(1)若a与⊙O相切,则d=_____(2)若d=3cm,则直线a与⊙O有____个交点(3)若d=7cm,则直线a与⊙O的位置关系是______2.⊙O的半径为5cm,A是⊙O上的点,直线a⊥OA,垂足为O,则直线a沿射线OA方向平移_____cm时与⊙O相切.3.直线a上的一点到圆心的距离等于的半径,则直线a与⊙O的位置关系是()(A)相离(B)相交(C)相切(D)相切或相交(设计意图:通过辨析题,加深学生对概念的理解,能运用新知识解决问题)四、例题尝试例1.在△ABC中,∠A=45°,AC=4,C为圆心,r为半径1.以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2cm;(3)r=3cm.2.当r分别满足什么条件时⊙C与直线AB相离、相切、相交.(设计意图:巩固由形的关系决定数量关系,由数量关系判断形的关系,体会数形结合的思想)巩固练习.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,C为圆心,r为半径1.以C为圆心,r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.2.试求r满足什么条件时,⊙C与直线AB(1)没有公共点;(2)只有一个公共点;(3)有两个公共点.3.试求r满足什么条件时,⊙C与线段AB(1)没有公共点;(2)只有一个公共点;(3)有两个公共点.(设计意图:从一般到特殊,体会直线与圆的位置关系和线段与圆的位置关系的联系和区别)五、系统归纳1.直线与圆的位置关系:图形直线与圆的位置关系公共点的个数圆心到直线的距离d与半径r的关系公共点的名称直线名称2.判定直线与圆的位置关系的方法有____种(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离d与半径r的关系来判断.在实际应用中,常采用第二种方法判定.六、课后作业班级:________姓名:_______1.在△ABC中,AB=5cm,BC=4cm,AC=3cm,(1)若以C为圆心,2cm长为半径画⊙C,则直线AB与⊙C的位置关系如何?(2)若直线AB与半径为r的⊙C相切,求r的值.(3)若直线AB与半径为r的⊙C相交,试求r的取值范围.2.圆O的直径4,圆心O到直线l的距离为3,则直线L与圆O的位置关系是()(A)相离(B)相切(C)相交(D)相切或相交3.直线l上的一点到圆心O的距离等于⊙O的半径,则直线l与⊙O的位置关系是()(A)相切(B)相交(C)相离(D)相切或相交4.直角三角形ABC中,∠C=900,AB=10,AC=6,以C为圆心作圆C,与AB相切,则圆C的半径为()(A)8(B)4(C)9.6(D)4.85.已知⊙O的直径是10厘米,点O到直线l的距离为d.(1)若直线l与圆O相切,则d=_________厘米(2)若d=4厘米,则直线l与⊙O的位置关系是_________________(3)若d=6厘米,则直线l与⊙O有___________个公共点.6.已知⊙O的半径为r,点O到直线l的距离为5厘米。(1)若r大于5厘米,则直线l与⊙O的位置关系是______________________(2)若r等于2厘米,L与⊙O有________________个公共点⑶若⊙O与直线l相切,则r=____________厘米7.已知Rt△ABC的斜边AB=6cm,直角边AC=3cm,以点C为圆心,半径分别为2cm和4cm画两圆,这两个圆与AB有怎样的位置关系?当半径多长时,AB与⊙C相切?8.如图,∠AOB=30°,点M在OB上,且OM=5cm,以M为圆心,r为半径画圆,试讨论r的大小与所画⊙M和射线OA的公共点个数之间的对应关系.OBAM《2.5直线和圆的位置关系》教学反思“直线和圆的位置关系”是《圆》这章的重点内容之一.从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定、圆和圆的位置关系的基础.从数学思想方法的层面上看,它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的数学思维品质.因此,直线和圆的位置关系在圆这一章中起着承上启下的作用.本节课的教学重点是:直线与圆的位置关系与对应数量关系的运用.教学难点是:直线与圆的位置关系与对应数量关系的探索.一、本节课的成功之处有:1.在创设情境方面,没有沿用原来书本上的太阳从海平面升起,而是直接与点与圆的位置关系进行类比,猜想直线和圆的位置关系.这样从知识内部的逻辑关系创设情境,符合初三学生的思维习惯,过渡较为自然,学生很顺利的就进入了新知识的学习过程中.2.学生的活动方面,在学生画出直线与圆的三种位置关系后,让学生实际操作,通过移动直尺观察直线与圆的位置的变化导致什么在变:(1)直线与圆的公共点的个数有变化;(2)圆心到直线的距离有变化.从而引导学生归纳出直线与圆的三种位置关系相交、相切、相离.其次,在探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系的过程中,注重启发、引导学生类比“点与圆的位置关系”,进而将直线与圆的位置关系转化为点(圆心到直线的垂线段的垂足)与圆的位置关系.3.注重例题的变式教学,在书本例题的基础上,问学生:当r分别满足什么条件时⊙C与直线AB相离、相切、相交?引导学生逆向思维,把位置关系转化为数量关系.同样在巩固练习中,也注重了变式教学,引导学生区分直线与圆的位置关系和线段与圆的位置关系的联系和区别,取得了不错的教学效果.4.在教学过程中注重思想方法的总结、归纳,如类比思想、数形结合思想、分类讨论等.5.在教学过程中注重板书的书写,在阐述直线与圆的位置关系,以及例题的教学中,注重教师板书的示范性.让学生养成良好的书写习惯,是学生将来能否取得优异成绩关键和基础.二、本节课的不足之处:1.在引导学生发现直线与圆的位置关系的过程中,可以结合多媒体向学生展示直线与圆的位置的变化过程,以便帮助学生更好的理解三种位置关系.2.应该强调直线与圆的位置关系主要由圆心到直线的距离d与半径r的关系来判断,课堂中没能突出这一点.3.在课堂中教师的讲解还是过多,学生思考、动手的时间和空间还不够.4.对于例题的教学,应该鼓励学生从多角度去思考问题,不该只局限于教师的讲解方法.5.课堂教学总体气氛还是较为沉闷,没能充分调动学生学习的积极性,希望以后能改进.1、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。4、不要觉得全心全意去做看起来微不足道的事,是一种浪费,小事做的得心应手了,大事自然水到渠成。5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。18、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个今天过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎接每一件事,让生命的每一天都有滋有味。19、上天不会亏待努力的人,也不会同情假勤奋的人,你有多努力时光它知道。20、成长这一路就是懂得闭嘴努力,知道低调谦逊,学会强大自己,在每一个值得珍惜的日子里,拼命去成为自己想成为的人。1、人家伸出手拉你一把,也请你别忘了用力狗刨,别太在意姿势是否难看,因为最难看的其实并不是苦苦挣扎,而是把自己活成一个软体动物,死乞白赖地往对方身上倚靠。2、不成熟的爱是——因为我需要你,所以我爱你;成熟的爱是——因为我爱你,所以我需要你。3、人这一生啊,需要你‘做自己’的关键时刻太多,反而是在这些小事上,去做做别人也没什么不好。一个人在努力向上爬的时候,背后其实是敞开的,就算掉下来没人接着,也尽量别让他人在你
本文标题:直线与圆的位置关系教学设计13-北师大版〔优秀篇〕
链接地址:https://www.777doc.com/doc-5356885 .html