您好,欢迎访问三七文档
陶瓷基复合材料沈卫平一、陶瓷基复合材料概述特种陶瓷具有优秀的力学性能、耐磨性好、硬度高及耐腐蚀性好等特点,但其脆性大,耐热震性能差,而且陶瓷材料对裂纹、气孔和夹杂等细微的缺陷很敏感。陶瓷基复合材料使材料的韧性大大改善,同时其强度、模量有了提高。颗粒增韧陶瓷基复合材料的弹性模量和强度均较整体陶瓷材料提高,但力–位移曲线形状不发生变化;而纤维陶瓷基复合材料不仅使其弹性模量和强度大大提高,而且还改变了力–位移曲线的形状(图10-1)。纤维陶瓷基复合材料在断裂前吸收了大量的断裂能量,使韧性得以大幅度提高。图10–1陶瓷基复合材料的力–位移曲线表10–1不同金属、陶瓷基体和陶瓷基复合材料的断裂韧性比较材料整体陶瓷颗粒增韧相变增韧AlB2BOB3BSiCAlB2BOB3B/TiCSiB3BNB4B/TiCZrOB2B/MgOZrOB2B/YB2BOB3BZrOB2B/AlB2BO3B断裂韧性MPa/mP1/2P2.7~4.24.5~6.04.2~4.54.59~126~96.5~15裂纹尺寸大小,m1.3~3641~7436~4141165~29274~16586~459表10–1不同金属、陶瓷基体和陶瓷基复合材料的断裂韧性比较材料晶须增韧纤维增韧SiC/Al2O3SiC/硼硅玻璃SiC/锂铝硅玻璃铝钢断裂韧性MPa/mP1/2P8~1015~2515~2533~4444~66裂纹尺寸大小,m131~204二、陶瓷基复合材料的制备工艺1、粉末冶金法原料(陶瓷粉末、增强剂、粘结剂和助烧剂)均匀混合(球磨、超声等)冷压成形(热压)烧结。关键是均匀混合和烧结过程防止体积收缩而产生裂纹。二、陶瓷基复合材料的制备工艺2、浆体法(湿态法)为了克服粉末冶金法中各组元混合不均的问题,采用了浆体(湿态)法制备陶瓷基复合材料。其混合体为浆体形式。混合体中各组元保持散凝状,即在浆体中呈弥散分布。这可通过调整水溶液的pH值来实现。对浆体进行超声波震动搅拌则可进一步改善弥散性。弥散的浆体可直接浇铸成型或热(冷)压后烧结成型。适用于颗粒、晶须和短纤维增韧陶瓷基复合材料(图10-2)。采用浆体浸渍法可制备连续纤维增韧陶瓷基复合材料。纤维分布均匀,气孔率低。图10–2浆体法制备陶瓷基复合材料示意图3、反应烧结法(图10-3)用此方法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优点:增强剂的体积比可以相当大;可用多种连续纤维预制体;大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。此方法最大的缺点是高气孔率难以避免。图10–3反应烧结法制备SiC/Si3N4基复合材料工艺流程4、液态浸渍法(图10-4)用此方法制备陶瓷基复合材料,化学反应、熔体粘度、熔体对增强材料的浸润性是首要考虑的问题,这些因素直接影响着材料的性能。陶瓷熔体可通过毛细作用渗入增强剂预制体的孔隙。施加压力或抽真空将有利于浸渍过程。假如预制体中的孔隙呈一束束有规则间隔的平行通道,则可用Poisseuiue方程计算出浸渍高度h:h=(rtcos)/2式中r是圆柱型孔隙管道半径;t是时间;是浸渍剂的表面能;是接触角;是粘度。图10-4液态浸渍法制备陶瓷基复合材料示意图5、直接氧化法(图10-5)按部件形状制备增强体预制体,将隔板放在其表面上以阻止基体材料的生长。熔化的金属在氧气的作用下发生直接氧化反应形成所需的反应产物。由于在氧化产物中的空隙管道的液吸作用,熔化金属会连续不断地供给到生长前沿。Al+空气Al2O3Al+氮气AlN图10-5直接氧化法制备陶瓷基复合材料示意图6、溶胶–凝胶(Sol–Gel)法(图10-6)溶胶(Sol)是由于化学反应沉积而产生的微小颗粒(直径100nm)的悬浮液;凝胶(Gel)是水分减少的溶胶,即比溶胶粘度大的胶体。Sol–Gel法是指金属有机或无机化合物经溶液、溶胶、凝胶等过程而固化,再经热处理生成氧化物或其它化合物固体的方法。该方法可控制材料的微观结构,使均匀性达到微米、纳米甚至分子量级水平。Sol–Gel法制备SiO2陶瓷原理如下:Si(OR)4+4H2OSi(OH)4+4ROHSi(OH)4SiO2+2H2O使用这种方法,可将各种增强剂加入基体溶胶中搅拌均匀,当基体溶胶形成凝胶后,这些增强组元稳定、均匀分布在基体中,经过干燥或一定温度热处理,然后压制烧结形成相应的复合材料。图10-6溶胶–凝胶法制备陶瓷基复合材料示意图6、溶胶–凝胶(Sol–Gel)法溶胶–凝胶法也可以采用浆体浸渍法制备增强相预制体(图10-7)。溶胶–凝胶法的优点是基体成分容易控制,复合材料的均匀性好,加工温度较低。其缺点是所制的复合材料收缩率大,导致基体经常发生开裂。图10-7溶胶–凝胶法制备纤维陶瓷基复合材料示意图7、化学气相浸渍(CVI)法用CVI法可制备硅化物、碳化物、氮化物、硼化物和氧化物等陶瓷基复合材料。由于制备温度比较低,不需外加压力。因此材料内部残余应力小,纤维几乎不受损伤。如可在800~1200C制备SiC陶瓷。其缺点是生长周期长、效率低、成本高、材料的致密度低等。图10-8ICVI法制备纤维陶瓷基复合材料示意图1)ICVI法:又称静态法。是将被浸渍的部件放在等温的空间,反应物气体通过扩散渗入到多孔预制件内,发生化学反应并沉积,而副产品物气体再通过扩散向外散逸(图10-8)。在ICVI过程中,传质过程主要是通过气体扩散来进行,因此过程十分缓慢,并仅限于一些薄壁部件。降低气体的压力和沉积温度有利于提高浸渍深度。2)FCVI法在纤维预制件内施加一个温度梯度,同时还施加一个反向的气体压力梯度,迫使反应气体强行通过预制件。在低温区,由于温度低而不发生反应,当反应气体到达温度较高的区域后发生分解并沉积,在纤维上和纤维之间形成基体材料。在此过程中,沉积界面不断由预制件的顶部高温区向低温区推移。由于温度梯度和压力梯度的存在,避免了沉积物将空隙过早的封闭,提高了沉积速率(图10-9)。图10-9FCVI法制备纤维陶瓷基复合材料示意图2)FCVI法FCVI的传质过程是通过对流来实现。可用来制备厚壁部件。但不适于制作形状复杂的部件。此外。在FCVI过程中,基体沉积是在一个温度范围内,必然会导致基体中不同晶体结构的物质共存,从而产生内应力并影响材料的热稳定性。8、其它方法1)聚合物先驱体热解法以高分子聚合物为先驱体成型后使高分子先驱体发生热解反应转化为无机物质,然后再经高温烧结制备成陶瓷基复合材料。此方法可精确控制产品的化学组成、纯度以及形状。最常用的高聚物是有机硅(聚碳硅烷等)。制备增强剂预制体浸渍聚合物先驱体热解再浸渍再热解……陶瓷粉+聚合物先驱体均匀混合模压成型热解8、其它方法2)原位复合法利用化学反应生成增强组元—晶须或高长径比晶体来增强陶瓷基体的工艺称为原位复合法。其关键是在陶瓷基体中均匀加入可生成晶须的元素或化合物,控制其生长条件使在基体致密化过程中在原位同时生长出晶须;或控制烧结工艺,在陶瓷液相烧结时生长高长径比的晶相,最终形成陶瓷基复合材料。三、陶瓷基复合材料的界面和界面设计1、界面的粘结形式(1)机械结合(2)化学结合陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。若增强体与基体在高温时不发生反应,那么在冷却下来时,陶瓷的收缩大于增强体,由此产生的径向压应力与界面剪切应力有关:=,为摩擦系数,一般取0.1~0.6。2、界面的作用陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。因此,陶瓷基复合材料界面要有一个最佳的界面强度。强的界面粘结往往导致脆性破坏,裂纹在复合材料的任一部位形成并迅速扩展至复合材料的横截面,导致平面断裂。这是由于纤维的弹性模量不是大大高于基体,因此在断裂过程中,强界面结合不产生额外的能量消耗。若界面结合较弱,当基体中的裂纹扩展至纤维时,将导致界面脱粘,发生裂纹偏转、裂纹搭桥、纤维断裂以至于最后纤维拔出。所有这些过程都要吸收能量,从而提高复合材料的断裂韧性(图10-10)。图10-10陶瓷基复合材料界面示意图3、界面性能的改善为了获得最佳界面结合强度,希望避免界面化学反应或尽量降低界面的化学反应程度和范围。实际当中除选择增强剂和基体在制备和材料服役期间能形成热动力学稳定的界面外,就是纤维表面涂层处理。包括C、SiC、BN、ZrO2和SnO2等。纤维表面涂层处理对纤维还可起到保护作用。纤维表面双层涂层处理是最常用的方法。其中里面的涂层以达到键接及滑移的要求,而外部涂层在较高温度下防止纤维机械性能降解。四、陶瓷基复合材料的性能1、室温力学性能1)拉伸强度和弹性模量对陶瓷基复合材料来说陶瓷基体的失效应变低于纤维的失效应变,因此最初的失效往往是基体中晶体缺陷引起的开裂。如图10-11所示,材料的拉伸失效有两种:第一:突然失效。如纤维强度较低,界面结合强度高,基体较裂纹穿过纤维扩展,导致突然失效。第二:如果纤维较强,界面结合较弱,基体裂纹沿着纤维扩展。纤维失效前纤维/基体界面在基体的裂纹尖端和尾部脱粘。因此,基体开裂并不导致突然失效,材料的最终失效应变大于基体的失效应变。图10-11纤维陶瓷基复合材料应力-应变曲线示意图2)断裂韧性纤维拔出与裂纹偏转是复合材料韧性提高的主要机制。纤维含量增加,阻止裂纹扩展的势垒增加,断裂韧性增加。但当纤维含量超过一定量时,纤维局部分布不均,相对密度降低,气孔率增加,其抗弯强度反而降低(图10-12)。图10-12CF/LAS的断裂韧性和弯曲强度随纤维含量的变化3)压缩及弯曲强度对于脆性材料,用弯曲和压缩试验更能表征材料的强度性能。4)影响因素增强相的体积分数:复合材料的力学性能呈现符合混合定律的线性关系。但当纤维含量超过一定量时,纤维局部分布不均,气孔率增加,导致材料力学性能偏离混合定律的线性关系。Phlips等提出如下经验公式修正偏差(图10-13):Em=Em0(1–1.9+0.92)式中Em:有孔隙材料的弹性模量;Em0:无孔隙材料的弹性模量;:基体中的孔隙率。图10-13连续CF/玻璃复合材料的弹性模量与纤维含量的关系热膨胀系数:当基体热膨胀系数大于纤维热膨胀系数时,会导致纤维与基体界面结合的减弱甚至脱离。但适当减弱界面结合,则有利于裂纹的扩展或沿晶界偏转或钝化和分散裂纹尖端造成的应力集中。图10-14微晶玻璃基体的热膨胀系数对复合材料性能的影响密度:弯曲强度和断裂韧性都随复合材料的密度增加而增加。密度的增加不仅提高了复合材料的强度,而且改变了应力—应变曲线的形状(图10-15)。图10-15不同密度的C/SiC复合材料的应力-位移曲线1、ρ=1.8g/cm3、2、ρ=2.1g/cm3界面:有碳界面层的C/SiC复合材料在断裂中表现出复合材料的典型断裂行为,即当应力达到最大值后,不是突然下降,而是呈梯形降低(见图10-16曲线1)。密度较高而无碳界面层的C/SiC复合材料在应力—应变曲线上表现为达到最大值后,应力曲线缓慢下降(图10-16曲线2)。图10-16不同界面状况复合材料的应力-位移曲线颗粒含量和粒径:图10-17SiCP含量对SiCP/AlN性能的影响图10-18SiCP粒径对SiCP/AlN性能的影响颗粒含量对材料弯曲强度及断裂韧性提高效果不是太大,但粒径的影响却较大(图10-17、10-18)。复合材料的性能随着粒径而增大,但随着粒径的进一步增大。其性能反而下降;这是由于材料的致密度下降,同时引进了更多的缺陷的缘故。2、高温力学性能1)强度图10-19图10-20图10-19、10-20分别为不同温度下SiCF/MAS复合材料的力学性能变化。室温下,复合材料的抗弯强度比基体
本文标题:陶瓷基复合材料
链接地址:https://www.777doc.com/doc-5362462 .html