您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 汽车车身轻量化技术(精)
汽车车身轻量化技术[摘要]介绍了车身轻量化的重要意义和相关车身性能。从轻质材料、结构设计和制造工艺3个方面阐述轻量化技术的主要途径,并通过实例重点分析采用热成型工艺的轻量化效果,最后对比3种轻量化技术的特点和应用范围。[主题词]轻量化,车身,汽车0引言安全、节能和环保已成为消费者最关心的汽车性能指标。如何开发出更安全、节能、环保的汽车也是当今汽车厂商的重点技术发展方向。汽车安全的重要性不言而喻,涉及到人身安全;节能和环保,不仅影响到用户的用车成本,也关系到可持续发展。目前,各国已有诸多安全和排放法规来强制规范汽车产品的安全和环保性能。研究资料表明,汽车的燃油消耗与汽车的自身质量成正比,汽车质量每减轻1%,燃油消耗降低0.6%-1.0%,燃油消耗下降,排放也随之减少。因此减少汽车自身质量成为提高节能环保性能的有效途径。而白车身作为车身骨架一般占整车质量的22%—25%,其轻量化对降低整车质量意义重大。因此,汽车车身轻量化技术成为现代汽车开发技术一个重点课题。1车身轻量化的基础车身轻量化必须在保证汽车安全性的前提下,同时达到车身刚度、疲劳耐久性、操控稳定性和振动舒适性等要求。1.1车身结构安全车身结构安全属于汽车的被动安全范畴,目的在于保护车内乘员的安全。自20世纪50年代起,许多国家陆续开始制定汽车被动安全法规。目前各国汽车被动安全法规有:美国联邦机动车法规体系(FMVSS)和欧洲法规体系(ECE/EEC)。而我国强制性汽车被动安全标准(GB)主要是参考欧洲法规体系。另外还有各国的新车评价体系(NCAP)全面地为消费者提供汽车安全性能方面的信息。车身结构安全直接影响到汽车是否满足这些被动安全法规。其包括正面碰撞、侧面碰撞、后面碰撞、翻滚和低速碰撞等。车身结构在设计上一般分为低速行人保护区,相容吸能区和乘员保护区。1.2车身刚度评价车身结构力学性能的主要指标是车身刚度,包括动态刚度和静态刚度,静态刚度又包含扭转刚度和弯曲刚度两个方面。在车身轻量化中,必须保证达到车身刚度的要求,这样才能使汽车的疲劳耐久性和振动舒适性等不受影响。1.3车身轻量化系数为了评价轻量化的效率,引申出了车身轻量化系数的概念,其可通过如下公式计算:式中,Lq为轻量化系数;MBIW为白车身质量;CT为白车身静态扭转刚度;A为白车身投影面积,由整车轴距与轮距相乘获得。轻量化系数Lq值越小,表示车身轻量化做得越好。2车身轻量化的途径2.1采用轻质材料2.1.1超高强度钢板按照抗拉强度的不同,钢材一般分为普通钢、高强度钢和超高强度钢。抗拉强度小于210MPa的称为普通钢;抗拉强度在210—550MPa之间的成为高强度钢;抗拉强度超过550MPa的称为超高强度钢。超高强度钢主要有:相变诱导塑性钢TRIP,双相钢DP,复相钢CP,以及马氏体钢Mart等。由于马氏体钢抗拉强度约为1200MPa,其一般采用滚压成型工艺制造,用于车门防撞杆和门槛加强板等零件。目前车身上使用的超高强度钢,主要是称为先进高强度钢(AHSS)的,其是利用金相组织强化得到的钢种,具有强度、延伸和塑性的各方面优良的综合性,其抗拉强度范围为500—1500MPa。另外还比较多地采用热成型钢,成型后零件的材料抗拉强度达到1800MPa。图1为目前某一较新车型的不同强度钢材分布,可以看出,目前该车型的超高强度钢比例已经达到11%,高强度钢比例为11%,普通钢只占27%。而从保证车身碰撞安全性的角度来看,高强度钢的用量将直接决定车身轻量化的水平。2.1.2铝合金铝合金是在汽车轻量化中应用相对成熟的轻质材料。奥迪汽车公司最先在Audi80和Audi100两款车型上采用了铝车门。1994年开发了第一代全铝空间框架结构(ASF)。ASF车身超过了现代同类钢板车身的车身刚度和被动安全性,但汽车自身质量却减轻了大约40%。但是铝材价格相对较高,是钢材价格的3倍左右,且铝制产品成型工艺相对复杂,这是制约铝合金轻量化应用的因素。除开发低成本的铝合金和先进的铝合金成型工艺,发展回收再生技术以进一步降低铝的成本之外,扩大铝合金应用的另一个研究方向是开发新的各种联接技术,如铸铁—铝连接、铝—钢连接、铝—镁连接等。2.1.3镁合金镁合金是比铝合金密度更小的轻质材料。其耐热耐压耐腐蚀且易于回收利用。欧洲正在使用和研制的镁合金汽车零部件有60多种。驶多飞集团与德国大众合作,准备将其专利产品镁合金MnE21替代某车型白车身上的多个钢板零件,如前后保险杠、车顶横梁和车门防撞杆等。如果替代成功,将大大减轻该车的车身质量。2.1.4工程塑料目前已有采用工程塑料的车身翼子板,其相比金属可以实现40%的减重,且其能耐侵蚀和轻微碰撞,在低速碰撞的情况下无需维修,从制造角度相比金属有更大的造型自由度提升,也便于零件集成,从满足行人保护方面考虑,也是理想的选择。2.2结构优化设计利用有限元法和优化设计方法可对结构力学性能进行分析和优化设计。在车身结构优化设计中,通常采用的优化方法有:拓扑优化、形貌优化、形状和尺寸优化。其中拓扑优化在结构的概念设计阶段应用较多。形貌优化可以对加强筋的形式、走向和位置深度等参数进行优化,形状和尺寸优化可以对饭金件的型面和板厚进行优化。一般优化问题可以通过下列关系表述:式中为一个n维向量,XL和XU分别是设计变量的上限和下限。在设定优化变量时,可以通过车身钣金零件的灵敏度分析,选择对目标函数贡献较大零件尺寸参与优化设计计算,作为优化设计变量。变量的变化范围则结合实际经验中的零件尺寸限制而定。在发动机舱盖内板和车门防撞杆的设计中,可以应用拓扑优化、形貌优化和形状优化的组合,选择更合理的内板上开孔位置、筋的走向和深度,优化车门防撞杆的型面。2.3制造工艺2.3.1热成型热成型工艺中,是将材料加热到再结晶温度以上,使板料在奥氏体状态时进行成形,降低板料成形时的流动应力,由此来提高成形性。把材料放在加热炉加热5+10min使其温度达到900—950℃,之后进行冲压加工及冷却。通过热成型工艺加工出的零件优势明显,其具有很高的强度和延伸性,可以大幅的减轻零件重量,能保持高的形状精度,冲压时无回弹,可加工成复杂形状。在车身中采用一定数量的热成型零件后,可以大幅提高车身防撞安全性能。图2为某车型热成型零件分布,该车型采用热成型的零件有:前保险杠横梁、前围下框前地板横梁、中央通道左右B柱加强板、左右A柱加强板。8个零件所在区域正是从充分满足碰撞安全性要求而设计布置的,保险杠可增强正面碰撞和低速碰撞安全性,而其它7个零件其构成乘员保护区,在侧面碰撞和正面碰撞中都可以很好地保护车内乘员。如图3和图4所示,原方案采用B柱加强板和B柱加强内板两个零件组合,板厚均为2.5mm;而热成型方案采用B柱加强板一个热成型零件,板厚为1.85mm。左右两侧B柱都采用热成型方案之后,可减重接近10kg。从设计选择的过程可知,其轻量化效果十分显著,采用更多的热成型零件,尤其在乘员保护区采用热成型零件,是车身轻量化设计的方向。2.3.2液压成型液压成型,是指利用液体作为传力介质或模具使工件成型的一种塑性加工技术,也称为液力成型。其按介质可分为水压成型和油压成型两种;按加工坯料分为管材液压成型、板料液压成型和壳体液压成型。液压成型与冲压焊接工艺比较,其仅需要凸模或凹模,液体介质作为凸模或凹模,当液体作为凸模可以制造很多刚性模无法成型的复杂零件。且液体作为传力介质具有可控性,具有很高的工艺柔性。车身结构中应用较多的是板料液压成型。采用液压成型除了能实现轻量化,同时增强车身刚强度和结构安全性之外,还能减少零件数量,从而也减少了模具数量和费用,减少了后续机加工和焊接等加工工序,降低了总制造费用。因此,液压成型工艺近年来得到快速发展。目前车身中已有仪表板横梁、散热器支架、座椅骨架、保险杠横梁、顶侧框等零件采用了液压成型工艺制造。2.3.3变截面板技术在车身上应用的变截面板有激光拼焊板(TWB),连续变截面板(TRB)和搭接板(PB)。TWB技术是指在零件冲压成形前将两块或多块具有相同厚度或不同厚度的相同钢种材料或不同钢种材料的板件通过激光焊接连接起来的一项新技术。采用激光焊接板不仅是一种轻量化途径,还可以减少汽车零部件的数量。车身结构的精度可以得到很大提高,许多冲压设备和加工工序可以得到缩减。另外,采用激光焊接板可以提高原材料利用率,通过在落料工序中采用排料技术,将型号和板厚不同的钢板合理组合从而降低材料废料率。目前,国内合资厂已有很多车型采用激光拼焊板,主要集中在上纵梁、前纵梁、前围板、中央通道、后纵梁、前地板、前门内板、B柱加强板、侧围内板等零件。如图5为前纵梁,前面部分板厚为1.75mm,属于车身结构的相容吸能区,中间部分板厚为2.6mm,属于车身结构的乘员保护区,后面部分板厚为1.35mm,这样的板厚分布既保证了碰撞安全性,又达到了轻量化的效果。同样地,中央通道前部板厚为1.5mm,后部板厚为1.2mm,前部属于乘员保护区。TRB是通过计算机实时控制和调整轧辊的间距,以获取沿轧制方向上按预先定制的厚度连续变化的板材。与TWB相比,TRB成型性能更佳,有连续、光滑的表面,可作车身外覆盖件。但受设备的限制,连续变截面板厚度变化有局限,而且不能把不同材料轧在一起。因此目前激光焊接板应用更广,将来连续变截面板的应用也会越来越多。PB是指将两块钢板先搭接在一起然后一起放入模型进行冲压成型的工艺。目前在某车型的门槛加强板上也得到应用,如图6所示。这样使车身具有更好的碰撞安全性,同时还节省了使两个零件连接的焊接工序。3结语车身轻量化技术是轻质材料、结构优化设计和先进制造工艺的集成应用。得益于近年来新材料研究的迅速发展,轻质材料可选范围不断扩大,但是目前高强度钢仍是最主要的应用最多的轻质材料。而结构优化设计则要依托CAE的辅助,不断采用更高效的仿真计算和优化方法,创新设计出更轻量化的结构是发展方向。而通过先进制造工艺实现轻量化,对厂家的制造工艺水平要求较高,因此国外欧美汽车制造商和国内合资厂运用较多。如何实现汽车的轻量化,达到最好的节能环保效果,应该根据产品定位,优化设计能力和制造工艺水平进行整体考虑,同时考虑成本因素,在满足车身刚度、结构安全性、疲劳耐久性、操控稳定性等前提下,选择最合适的轻量化途径,最终增强产品的竞争力。
本文标题:汽车车身轻量化技术(精)
链接地址:https://www.777doc.com/doc-5368624 .html