您好,欢迎访问三七文档
1.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AMEECF△≌△,所以AEEF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.2.已知RtABC△中,90ACBCCD,∠,为AB边的中点,90EDF°,EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当EDF绕D点旋转到DEAC于E时(如图1),易证12DEFCEFABCSSS△△△.当EDF绕D点旋转到DEAC和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS△、CEFS△、ABCS△又有怎样的数量关系?请写出你的猜想,不需证明.ADFCGEB图1ADFCGEB图2ADFCGEB图3AECFBD图1图3ADFECBADBCE图2F3.如图14-1,的边在直线上,,且;的边也在直线上,边与边重合,且.(1)在图14-1中,请你通过观察、测量,猜想并写出与所满足的数量关系和位置关系;(2)将沿直线向左平移到图14-2的位置时,交于点,连结,.猜想并写出与所满足的数量关系和位置关系,请证明你的猜想;(3)将沿直线向左平移到图14-3的位置时,的延长线交的延长线于点,连结,.你认为(2)中所猜想的与的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.4.如图(1)所示,OP是角MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。求∠EFA的度数。(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;(3)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(2)中所得结论是否仍然成立?不必说明理由ABC△BClACBCACBCEFP△FPlEFACEFFPABAPEFP△lEPACQAPBQBQAPEFP△lEPACQAPBQBQAPA(E)BC(F)PlllAABBQPEFFCQ图14-1图14-2图14-3EPC.5.操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN=NC(如图②);②DM∥AC(如图③).附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,图(1)NPOM图(2)FEDACB图(3)FEDCAB在图④中画出图形,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质.变式练习:如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.ABCEFG图15-2DABCDEFG图15-3ABCFG图15-16.如图1,等边△ABC中,点D、E、F分别为AB、BC、CA上的点,且AD=BE=CF.(1)△DEF是等边三角形;(2)如图2,M为线段BC上一点,连接FM,在FM的右侧作等边△FMN,连接DM、EN.求证:DM=EN;(3)如图3,将上题中“M为线段BC上一点”改为“点M为CB延长线上一点”,其余条件不变,求证:DM=EN.7.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图15-1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图15-2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图15-3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)8.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.9.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90º.①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为▲,数量关系为▲.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)图13-2EABDGFOMNC图13-3ABDGEFOMNC图13-1A(G)B(E)COD(F)ABCDEF第28题图图甲图乙FEDCBAFEDCBA图丙图14-1AHC(M)DEBFG(N)G图14-2AHCDEBFNMAHCDE图14-3BFGMN10.在图14-1至图14-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图14-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;(2)将图14-1中的CE绕点C顺时针旋转一个锐角,得到图14-2,求证:△FMH是等腰直角三角形;(3)将图14-2中的CE缩短到图14-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)11.如图14―1,14―2,四边表ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想。⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。
本文标题:全等三角形培优题
链接地址:https://www.777doc.com/doc-5380315 .html