您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 26.3 实际问题与二次函数 同步作业(含答案)
-1-练习4实际问题与二次函数一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s;h的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是()A.0.7lsB.0.70sC.0.63sD.0.36s2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x2+0.002x,现该车在限速140km∠h的高速公路上出了交通事故,事后测得其刹车距离为46.5m,请推测刹车时汽车________(填“是”或“不是”)超速.3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20m,河面距拱顶4m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10图26-9-2-4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?-3-6.如图26-11所示,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4m,这辆货运卡车能否通过该隧道?通过计算说明你的结论.图26-117.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价每只为P(元)且R、P与x的关系式为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?-4-8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表26-2所示.表26-2x/元152030…y/件252010…若日销售量y是销售价x的一次函数;(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?-5-9.图26-12是某段河床横断面的示意图.查阅该河段的水文资料,得到表26-3中的数据.图26-12图26-13表26-3x/m51020304050y/m0.1250.524.5812.5(1)请你以表26-3中的各对数据(x,y)作为点的坐标,尝试在图26-13所示的坐标系中画出y关于x的函数图象;(2)①填写表26-4.表26-4x51020304050y2x②根据所填表中数据呈现的规律,猜想出用x表示y的二次函数关系式:________.(3)当水面宽度为36m时,一船吃水深度(船底部到水面的距离)为1.8m的货船能否在这个河段安全通过?为什么?-6-三、能力提高10.学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线距径落下.且在过OA的任意平面上的抛物线如图26-14所示,建立平面直角坐标系(如图26-15所示),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+2325x,请回答下列问题:图26-14图26-15(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?-7-11.《西游记》中的孙悟空对花果山的体制进行全面改革后,为了改善旅游环境,决定对水帘洞进行改造翻新,计划在水帘洞前建一个由喷泉组成的水帘门洞,让游客在进入水帘洞前先经过一段由鹅卵石铺就的小道,小道两旁布满喷水管,每个喷管喷出的水最高达4m,落在地上时距离喷水管4m,现在设如图26-16是喷泉所经过的路线,与喷头A和喷泉落地点B的连线为横轴,AB垂直平分线为纵轴建立直角坐标系.问小道的边缘距离喷水管至少应为多少米,才能使身高不大于1.75m的游客进入水帘洞时不会被水淋湿?图26-1-8-12.我区某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,我区政府对该花木产品每投资x万元,所获利润为P=501(x-30)2+10万元.为了响应我国西部大开发的宏伟决策,我区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通.公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=308)50(5194)50(50492xx万元.(1)若不进行开发,求10年所获利润的最大值是多少?(2)若按此规划进行开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法.-9-13.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图26-17所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01m,15=3.873)图26-17-10-四、模拟链接14.设抛物线y=2x2+kx+1-2k(k为常数)与x轴交于A、B两点,与y轴交于C点,且A点在原点O的左侧,B点在原点O的右侧,满足(OA+OB)2-OC=429(1)求抛物线的解析式;(2)在抛物线上是否存在D、E两点,使AO恰为△ADE的中线,若存在,求出△ADE的面积,若不存在,说明理由.-11-15.已知抛物线y=x2+(2n-1)x+n2-1(n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)如图26-18所示,设A是(1)所确定的抛物线上位于x轴下方且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.①当BC=1时,求矩形ABCD的周长;②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.图26-18-12-16.已知OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图26-19甲所示,在OA上选取一点D,将△COD沿CD翻折,使点O落在BC边上,记为E.求折痕CD所在直线的解析式;(2)如图26-19乙所示,在OC上选取一点F,将△AOF沿AF翻折,使点O落在BC边,记为G.①求折痕AF所在直线的解析式;②再作GH∥AB交AF于点H,若抛物线y=121x2+h过点H,求此抛物线的解析式,并判断它与直线AF的公共点的个数.图26-19(3)如图26-19丙所示:一般地,在以OA、OC上选取适当的点I、J,使纸片沿IJ翻折后,点O落在BC边上,记为K,请你猜想:①折痕IJ所在直线与第(2)题②中的抛物线会有几个公共点;②经过K作KL∥AB与IJ相交于L,则点L是否必定在抛物线上.将以上两项猜想在(1)的情形下分别进行验证.-13-参考答案一、自主学习1.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s;h的单位:m)可以描述他跳跃时重心高度的变化.如图26-9所示,则他起跳后到重心最高时所用的时间是()A.0.7lsB.0.70sC.0.63sD.0.36s图26-9答案:D2.行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(m)与车速x(km/h)间有下述的函数关系式:s=0.01x2+0.002x,现该车在限速140km∠h的高速公路上出了交通事故,事后测得其刹车距离为46.5m,请推测刹车时汽车________(填“是”或“不是”)超速.答案:是3.有一座抛物线型拱桥(如图26-10所示),正常水位时桥下河面宽20m,河面距拱顶4m(1)在如图26-10所示的平面直角坐标系中,求出抛物线解析式;(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上涨多少米时,就会影响过往船只?图26-10答案:(1)y=251x+4;(2)0.76m4.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价1元,每天的销售量-14-就会减少10件.(1)写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;(2)每件售价定为多少元,才能使一天的利润最大?答案:(1)y=-10x+280x-1600;(2)14y=(x-8)×[l00-(x-10)×10]=(x-8)(100-10x+100)=(x-8)(-l0x+200)=-10x+280x-1600当x=)10(22802ab=14,因为y=-10x+280x-1600中的a<0,故此时y有最大值.二、基础巩固5.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?答案:(1)y=-4x+64x+30720;(2)增加8台机器,最大生产总量是30976件y=(80+x)(384-4x)=4x+64x+30720因为y=-4x+64x+30720=-4(x-8)2+30976所以x=8时,y最大值=30976.6.如图26-11所示,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.图26-11(1)求抛物线的解析式;(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4m,这辆货运卡车能否通-15-过该隧道?通过计算说明你的结论.答案:(1)y=41x+6;(2)这辆货运卡车能通过隧道.由图可设抛物线解析式为y=ax+c,由题可知A(-4,2),E(0,6),c=6,代入,得2=(41)2a+6,a=41,故解析式为y=41x+6;当x=2.4时,y=41×2.42+6=4.56>4.2,所以这辆货运卡车能通过隧道.7.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价每只为P(元)且R、P与x的关系式为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?答案:(1)日产量为
本文标题:26.3 实际问题与二次函数 同步作业(含答案)
链接地址:https://www.777doc.com/doc-5396434 .html