您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 直流调速系统-课件(教师版)1-1
第1篇直流拖动控制系统直流调速方法直流调速电源直流调速控制内容提要引言直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流拖动控制系统。★直流调速方法根据直流电动机转速方程(1-1)式中,n—转速(r/min);U—电枢电压(V);I—电枢电流(A);R—电枢回路总电阻(Ω);—励磁磁通(Wb);Ke—由电机结构决定的电动势常数。ΦeKIRUn由式(1-1)看出,可以有三种方法调节电动机的转速:(1)调节电枢供电电压U(2)减弱励磁磁通Φ(3)改变电枢回路电阻R直流调速方法ΦeKIRUn(1-1)直流调速方法(1)调压调速工作条件:保持励磁=N;保持电阻R=Ra调节过程:改变电压UNUUn,n0调速特性:转速下降,机械特性曲线平行下移。nn0OIILUNU1U2U3nNn1n2n3调压调速特性曲线(2)调阻调速工作条件:保持励磁=N;保持电压U=UN;调节过程:增加电阻RaRRn,n0不变;调速特性:转速下降,机械特性曲线变软。nn0OIILRaR1R2R3nNn1n2n3调阻调速特性曲线直流调速方法直流调速方法(3)调磁调速工作条件:保持电压U=UN;保持电阻R=Ra;调节过程:减小励磁Nn,n0调速特性:转速上升,机械特性曲线变软。nn0OTeTLN123nNn1n2n3调磁调速特性曲线三种调速方法的性能与比较对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以调压调速为主。本章提要1.1直流调速系统用的可控直流电源1.2晶闸管-电动机系统(V-M系统)的主要问题1.3直流脉宽调速系统(PWM-M系统)的主要问题1.4反馈控制闭环直流调速系统的稳态分析和设计1.5反馈控制闭环直流调速系统的动态分析和设计1.6比例积分控制规律和无静差调速系统1.7电压反馈电流补偿的直流调速系统第1章单闭环控制的直流调速系统1.1直流调速系统用的可控直流电源根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。主要的可控直流电源有:三种常用的可控直流电源旋转变流机组——用交流电动机和直流发电机组成机组,获得可调的直流电压。静止式可控整流器——用静止式的可控整流器获得可调的直流电压。直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,产生可变的平均电压。1.1.1旋转变流机组图1-1旋转变流机组和由它供电的直流调速系统(G-M系统)原理图•G-M系统工作原理由原动机(柴油机、交流异步或同步电动机)拖动直流发电机G实现变流,由G给需要调速的直流电动机M供电,调节G的励磁电流if即可改变其输出电压U,从而调节电动机的转速n。这样的调速系统简称G-M系统。•G-M系统特性n第I象限第IV象限OTeTL-TLn0n1n2第II象限第III象限图1-2G-M系统的机械特性1.1.2静止式可控整流器图1-3晶闸管-电动机调速系统(V-M系统)原理图•V-M系统工作原理晶闸管—电动机调速系统(简称V-M系统),图中VT是晶闸管可控整流器,通过调节触发装置GT的控制电压Uc来移动触发脉冲的相位,即可改变整流电压Ud,从而实现平滑调速。•V-M系统的特点与G-M系统相比较:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用晶体管来控制,不再像直流发电机那样需要较大功率的放大器。在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级,这将大大提高系统的动态性能。•V-M系统的问题由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,若超过允许值会在很短时间内损坏器件。由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。1.1.3直流斩波器或脉宽调制变换器在干线铁道电力机车、工矿电力机车、城市有轨和无轨电车和地铁电力机车等电力牵引设备上,常采用直流串励或复励电动机,由恒压直流电网供电。过去用切换电枢回路电阻来控制电机的起动、制动和调速,在电阻中耗电很大。而现在采用直流斩波器可以将恒压直流变换成可变直流。1.直流斩波器的基本结构a)原理图b)电压波形图tOuUsUdTton图1-4直流斩波器-电动机系统的原理图和电压波形+MUsLVDM+--VT2.斩波器的基本控制原理在原理图中,VT表示电力电子开关器件,VD表示续流二极管。当VT导通时,直流电源电压Us加到电动机上;当VT关断时,直流电源与电机脱开,电动机电枢经VD续流,两端电压接近于零。如此反复,电枢端电压波形如图1-5b,好像是电源电压Us在ton时间内被接上,又在T–ton时间内被斩断,故称“斩波”。这样,电动机得到的平均电压为3.输出电压计算ssondUUTtU(1-2)式中T—晶闸管的开关周期;ton—开通时间;—占空比,=ton/T=tonf,其中f为开关频率。为了节能并实行无触点控制,现在多用电力电子开关器件,如快速晶闸管、GTO(门极可关断晶闸管)、IGBT(绝缘栅双极晶体管)等。采用简单的单管控制时,称作直流斩波器,后来逐渐发展成采用各种脉冲宽度调制开关的电路,脉宽调制变换器(PWM-PulseWidthModulation)。直流斩波器或脉宽调制变换器4.斩波电路三种控制方式根据对输出电压平均值进行调制的方式不同而划分,有三种控制方式:T不变,变ton—脉冲宽度调制(PWM);ton不变,变T—脉冲频率调制(PFM);ton和T都可调,改变占空比—混合型。•PWM系统的优点(1)主电路线路简单,需用的功率器件少。(2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。(3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右。(4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强。PWM系统的优点(续)(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。(6)直流电源采用不控整流时,电网功率因数比相控整流器高。小结三种可控直流电源,V-M系统在20世纪60~70年代得到广泛应用,目前主要用于大容量系统。直流PWM调速系统作为一种新技术,发展迅速,应用日益广泛,特别在中、小容量的系统中,已取代V-M系统成为主要的直流调速方式。
本文标题:直流调速系统-课件(教师版)1-1
链接地址:https://www.777doc.com/doc-5402813 .html