您好,欢迎访问三七文档
1小军回家离家门300米时,妹妹和小狗一起向他奔来。小军和妹妹的速度都是50米一分钟,而小狗的速度是200米一分钟,小狗遇到小军后以同样的速度不停往返于小军和妹妹之间,当小军与妹妹相距只有10米时,小狗一共跑了多少米?(300-10)/(50+50)*200=290/100*200=2.9*200=580(m)答:当小军与妹妹相距只有10米时,小狗一共跑了580m。甲乙两车分别从AB两地出发,在AB之间不断的往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲乙两车第3次相遇点与第4次相遇点恰好为100千米,那么AB两地之间的距离是多少千米?解:甲乙的速度比是:15:35=3:7;第三次相遇时两人共走5个单程,甲走5÷(3+7)×3=1.5(个)个单程,第三次相遇的位置:距离A点1/2处(中点);第四次相遇时两人共走7个单程,甲走7÷(3+7)×3=2.1(个)个单程,第三次相遇的位置:距离A点1/10处;全程的距离是:100÷(0.5-0.1)=250(千米)答:AB两地之间的距离是250千米。1.在一条环形跑道上,甲乙两人从同一地点相背而行,当两人第一次相遇时,甲比乙共多行200米.已知乙和甲的速度比是2:3,这条跑道长几米?2.甲乙两个书架,已知甲书架有书600本.从甲书架上取出它的三分之一,从乙书架上取出它的百分之七十五以后,甲书架上的书比乙书架上的2倍还多150本.乙书架原有书几本?3.一列火车通过120米长的大桥要21秒,通过80米长的隧道要17秒,这列火车车身长几米?4.4千克苹果的价格等于3千克香蕉的价格,5千克香蕉的价格等于8千克橘子的价格,那么12千克橘子的价格等于几千克苹果的价格?5.在含盐率百分之十的盐水中,加入盐和水个十克,这时盐水的含盐率是?6.甲乙两人公储蓄人民币若干元,其中甲占总数的百分之三十.若乙取30元给甲,则乙余下的钱和甲原有的钱一样多,两人公储蓄几元?7.一筐白菜连筐重40.5千克,吃了一半后,连筐还有21.5千克.这筐白菜重几千克?筐重几千克?8.从山下到山顶的盘山公路长3千米,小明上山时每小时走2千米,下山时每小时走3千米.他上下山的平均速度是每小时几千米?1.分析:因为甲乙两人同时出发,所以路程比=时间比。解:设甲行了X米,则乙行了(X-200)米。(x-200)/x=2/3X=600(X+x-200)=1000答:这条跑道长1000米。2.分析:根据甲乙的数量关系直接列方程。解:设乙书架原有书X本。(1-75/100)*x*2+150=600*(1-1/3)x/2=250x=5002答:乙书架原有书500本。3.分析:火车速度不变。解:设这列火车车身长X米。(120+x)/21=(80+x)/17X=90答:这列火车车身长90米.4.分析:根据苹果橘子与香蕉的关系列方程。解:设苹果X元一斤,橘子Y元一斤,香蕉Z元一斤。4X=3Y5Y=8Z20X=15Y15Y=24Z20X=24Z12Z=10X答:12千克橘子的价格等于10千克苹果的价格。5.分析:略。解:(10+10)/(100+10)=2/11~~18.2%答:这时盐水的含盐率是18.2%。6.分析:略。解:设两人共储蓄X元.30%*X=(100%-30%)*x-30X=75答:两人共储蓄75元。7.分析:略。解:设这筐白菜重X千克,筐重Y千克。X+y=40.5x/2+y=21.5X=38y=2.5答:这筐白菜重38千克,筐重2.5千克。王老师从北京站乘火车去广州,10时后火车行驶了全城的11分之5,从北京到广州需要多长时间?一项工程甲乙两人合做8天完成,乙丙合做9天完成。丙单独做几天完成?思路:1,若甲乙工作能力相等,则在八天内,每人每天完成十六分之一;乙在八天里完成工作总量的十六分之八。2,乙丙合作时,若乙工作能力不变,则乙在九天里完成工作总量的十六分之九。那么,丙在九天里完成了工作总量的十六分之七。3,设工作总量为1。依题意列式:9÷(1-9/16)=20.67(天)答:丙单独做20.67天完成。某班有学生45人其中有28人学钢琴,有35人学电脑,有37人学美术,有40人上奥校,那么可以肯定,这个班至少有多少学生以上四项全学。算式:45-28=1745-35=1045-37=845-40=545-(17+10+8+5)=5(人)45-28表示班里有多少人不学钢琴;48-35表示有多少人不学电脑;45-37表示有多少人不学美术;45-40表示多少人不学奥数。17、10、8、5表示有多少人不可能学四项,用四十五一减既能求出有多少人学四项。暑假期间,小明计划用8天做完数学作业,实际每天比计划多做了3道题,结果只用7天就完成了作业,数学作业共有多少道题?37天就完成了,那么这七天多做了3*7=21道题目也就是原来的(8-7)=1一天做了21道题目则数学作业共有道题21*8=168设原来每天做X题X*8=(X+3)*78*(3*7)=168设计划每天做x道题8x=7(x+3)x=2121乘8=168解:设数学作业共有x道题。x/8+3=x/7168+7x=8xx=168答:数学作业共有168道题.设总共有x道题,每天做y道。8*y=x,(y+3)*7=x.所以:(y+3)*7=8*y解得x=168y=21解:设小明原计划每天做x道题。8x=7(x+3)解得:x=21所以共有8*21=168道题设每天做x道8x=7*(x+3)x=21共168算术法:计划每天完成:(3×7)÷(8-7)=21道数学作业共有:21×8=168道方程法:设小明计划每天做X道,则实际每天做(X+3)道8X=7(X+3)8X=7X+218X-7X=21X=21数学作业共有:21×8=168道1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。4【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套)答:现在可以做904套。例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。3和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三5袋化肥各重多少千克。解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(3+1)=62(棵)(2)桃树有多少棵?62×3=186(棵)答:杏树有62棵,桃树有186棵。例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(1.4+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?6解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲
本文标题:相遇问题应用题集锦
链接地址:https://www.777doc.com/doc-5404371 .html