您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级上册数学-三角形三边关系-命题与证明
1三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180.注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60,最小内角不能大于60.5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()2A.6个B.7个C.8个D.9个例2:已知实数x、y满足084yx,则以x、y的值为两边的等腰三角形的周长是()A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1B.2C.3D.4例4:在△ABC中,∠A=31∠B=51∠C,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练31、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.65、已知a,b,c是△ABC的三边长,且满足|a-b|+bc=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3a5B.-5a3C.-5a-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54,∠B=36,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()4A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()54.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.5cm,5cm,11cmD.13cm,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40,∠AED=60,则∠A的度数是()A.100B.90C.80D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(αβ),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15,∠BAD=40,求∠BED的度数;6(2)在△BED中,作BD边上的高;(3)若△ABC的面积为40,BD=5,求△BDE中BD边上的高为多少?12.如图,在△ABC中,AD是BC边上的高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a、b、c,且(a-b-c)(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC三边的中线AD,BE,CF的公共点G,若12ABCS,则图中阴影部分面积是_____.74.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且24cmSABC,则阴影S等于()A.2cm2B.1cm2C.21cm2D.41cm25.如图,用钢筋做支架,要求BA、DC相交所成的锐角为32,现测得∠BAC=∠DCA=115,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a、b、c且cba,当b=4时,符合条件的a、b、c的取值若下表:abc可能的取值(a+bc)满足条件的三角形的个数8444、5、6、7434241441(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个?考点二:命题与证明►知识点拨:1.命题及其分类(1)命题定义:对某一事件作出正确或不正确判断的语句(或式子)叫做命题.举例:一年有365天;对顶角相等;欢迎光临,其中前两个是命题.识别:没有对一件事的正确与否作出任何判断的语句,不是命题.(2)分类:①真命题:正确的命题;②假命题:错误的命题;③识别:一个命题要么是真命题,要么是假命题,不能模棱两可.注意:①命题必须是一个完整的句子,是对事情作出肯定或否定的判断;②命题一般为陈述句.2.命题的结构①题设(或条件),是已知事项;②一般形式:如果p,那么q(其中p是题设,q是结论);③结论(或题断),由已知事项推出的事项.3.互逆命题原命题与逆命题:将命题“如果p,那么q”中的条件与结论互换,便得到一个新命题“如果q,那么p”,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个就叫做原9命题的逆命题.4.反例:符合命题条件,但不满足命题结论的例子,称为反例.注意:对于一个命题,只要能举出反例,就说明它是假命题.5.定理、证明①定理:从基本事实或其他真命题出发,用推理方法判断为正确的,并被选作判断命题真假的依据,这样的真命题叫做定理.②证明:从已知条件出发,依据定义、基本事实、已证定理,并按照逻辑规则,推倒出结论,这一方法称为演绎推理.演绎推理的过程就是演绎证明,简称证明.6.三角形的外角及三角形内角和定理的推论①三角形外角:由三角形的一边与另一边的延长线组成的角.②三角形内角和定理的推论:推论1:直角三角形的两个锐角互余.推论2:有两个角互余的三角形是直角三角形.推论3:三角形的外角等于与它不相邻的两个内角和.推论4:三角形的外角大于与它不相邻的任何一个内角.例1:下列语句不是命题的是()A.直角都等于90B.对顶角相等C.互补的两个角不相等D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则ab=0;(3)对顶角相等.10例4:请举反例说明命题“对于任意实数x,552xx的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC中,∠ABC=66,∠ACB=54,BE、CF是两边AC、AB上的高,它们交于点H.求∠ABE和∠BHC的度数.基础训练1、下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB外一点P作直线AB的垂线2、下列命题中,是真命题的是()A.三角形的一个外角大于任何一个内角B.三角形的一个外角等于两个内角之和C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是()11A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE.()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:12(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|
本文标题:八年级上册数学-三角形三边关系-命题与证明
链接地址:https://www.777doc.com/doc-5406204 .html