您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 纺织服装 > 第七章应力状态习题答案
1第七章应力状态习题解答7.3在题7.3图所示各单元体中,试用解析法和图解法求斜截面ab上的应力。应力的单位为MPa。解(a)如题7.3图(a)所示。xσ=70MPa,yσ=-70MPa,xyτ=0,α=30°(1)解析法70707070cos2sin2cos600352222xyxyxyMPaMPaασσσσσατα+−−+⎛⎞=+−=+−=⎜⎟⎝⎠D7070sin2cos2sin60060.622xyxyMPaMPaασστατα−+⎛⎞=+=+=⎜⎟⎝⎠D(2)图解法作Oστ坐标系,取比例1cm=70MPa,由xσ、xyτ定xD点,yσ、xyτ定yD,点,连xD、yD交τ轴于C点,以C点为圆心,CxD为半径作应力圆如题7,3图(al)所示。由CxD起始,逆时针旋转2a=60°得Dα,点。从图中可量得Dα点的坐标,便是ασ和ατ值。(b)如题7.3图(b)所示。xσ=70MPa,yσ=70MPa,xyτ=0,α=300°(1)解析法70707070cos2sin2cos600702222xyxyxyMPaMPaασσσσσατα+−+−⎛⎞=+−=+−=⎜⎟⎝⎠D27070sin2cos2sin600022xyxyMPaασστατα−−⎛⎞=+=+=⎜⎟⎝⎠D(2)图解法作应力圆如题7.3图(b,)所示。从图中可量得点的坐标,此坐标便是ασ和ατ数值.由题7.3图(b1)可知应力圆蜕化为点C。(c)如题7.3图(b1)所示。xσ=100MPa,yσ=50MPa,xyτ=0,α=60°(1)解析法1005010050cos2sin2cos1200222262.5xyxyxyMPaMPaασσσσσατα+−+−⎛⎞=+−=+−⎜⎟⎝⎠=D10050sin2cos2sin120021.722xyxyMPaMPaασστατα−−⎛⎞=+=+=⎜⎟⎝⎠D(2)图解法作应力圆如题7.3图(cl)所示。从图中可量得Dα点的坐标,此坐标便是ασ和ατ数值。(d)如题7.3图(d)所示。xσ=-50MPa,yσ=100MPa,xyτ=0,α=150°(1)解析法5010050100cos2sin2cos300222212.5xyxyxyMPaMPaασσσσσατα+−−+−−⎛⎞=+−=+⎜⎟⎝⎠=−D50100sin2cos2sin30006522xyxyMPaMPaασστατα−−−⎛⎞=+=+=⎜⎟⎝⎠D(2)图解法作应力圆如题7.3图(d1)所示。从图中可量得Dα点的坐标,此坐标便是ασ和ατ数值。37.4已知应力状态如题7.4图所示,图中应力单位皆为MPa。试用解析法及图解法求:(l)主应力大小,主平面位置;(2)在单元体上绘出主平面位置及主应力方向;(3)最大切应力。解(a)如题7.4图(a)所示。xσ=50MPa,yσ=0,xyτ=20MPa(1)解析法222max2min575005002072222xyxyxyMPaMPaMPaσσσσστσ⎡⎤+−⎛⎞⎫⎧+−⎛⎞⎛⎞⎢⎥=±+=±+=⎬⎨⎜⎟⎜⎟⎜⎟−⎢⎥⎝⎠⎝⎠⎩⎭⎝⎠⎣⎦按照主应力的记号规定1σ=57MPa,2σ=0,3σ=-7MPa02220tan20.8500xyxyτασσ−×=−==−−−,0α=-19.3°13max57(7)3222MPaMPaσστ−−−===(2)图解法4作应力圆如题7.4图(a1)所示。应力回与σ轴的两个交点对应着两个主应力1σ、3σ:的数值。由xCD,顺时针旋转02α,可确定主平面的方位。应力圆的半径即为最大切应力的数值.主应力单元体如题7.4图(a2)所示。(b)如题7.4图(b)所示。xσ=50MPa,yσ=0,xyτ=-20MPa(1)解析法()222maxmin575005002072222xyxyxyMPaMPaMPaσσσσστσ⎡⎤+−⎛⎞⎫⎧+−⎛⎞⎢⎥=±+=±+−=⎬⎨⎜⎟⎜⎟−⎢⎥⎝⎠⎩⎭⎝⎠⎣⎦按照主应力的记号规定1σ=57MPa,2σ=0,3σ=-7MPa()02220tan20.8500xyxyτασσ−×−=−==−−−,0α=19.3°13max57(7)3222MPaMPaσστ−−−===作应力园如题7.4图(b1)所示。应力图与σ轴的两个交点的坐标即是主应力1σ、3σ的数值.由xCD,顺时针旋转02α,可确定主平面的方位。xCD的长度即为最大切应力的数值。主应力单元体如题7.4图(c2)所示。5(d)如题7.4图(d)所示。xσ=-40MPa,yσ=-20MPa,xyτ=-40MPa(1)解析法()222maxmin11.2402040204071.22222xyxyxyMPaMPaMPaσσσσστσ⎡⎤+−⎛⎞⎫⎧−−−+⎛⎞⎢⎥=±+=±+−=⎬⎨⎜⎟⎜⎟−⎢⎥⎝⎠⎩⎭⎝⎠⎣⎦按照主应力的记号规定1σ=11.2MPa,2σ=0,3σ=-71.2MPa()02240tan244020xyxyτασσ−×−=−==−−−+,0α=38°13max11.2(71.2)41.222MPaMPaσστ−−−===(2)图解法作应力圆如题7.4图(d1)所示。应力圆与σ轴的两个交点的坐标,即是1σ、3σ的数值。由xCD,顺时针旋转02α,可确定主平面的方位。xCD的长度即为最大切应力的数值。主应力单元体如题7.4图(d2)所示。6(e)如题7.4图(e)所示。xσ=0,yσ=-80MPa,xyτ=20MPa(1)解析法22max2min4.70800802084.72222xyxyxyMPaMPaMPaσσσσστσ⎡⎤+−⎛⎞⎫⎧−+⎛⎞⎢⎥=±+=±+=⎬⎨⎜⎟⎜⎟−⎢⎥⎝⎠⎩⎭⎝⎠⎣⎦按照主应力的记号规定1σ=4.7MPa,2σ=0,3σ=-84.7MPa02220tan20.5080xyxyτασσ−×=−==−−+,0α=-13.3°13max4.784.744.722MPaMPaσστ−+===(2)图解法作应力圆如题7.4图(e1)所示。应力圆与σ轴的两个交点的坐标即是主应力1σ、3σ7的数值。由xCD,顺时针旋转02α,可确定主平面的方位。xCD的长度即为最大切应力的数值。主应力单元体如题7.4图(e2)所示。(f)如题7.4图(f)所示。xσ=-20MPa,yσ=30,xyτ=20MPa(1)解析法22max2min372030203020272222xyxyxyMPaMPaMPaσσσσστσ⎡⎤+−⎛⎞⎫⎧−+−−⎛⎞⎢⎥=±+=±+=⎬⎨⎜⎟⎜⎟−⎢⎥⎝⎠⎩⎭⎝⎠⎣⎦按照主应力的记号规定1σ=37MPa,2σ=0,3σ=-27MPa02220tan20.82030xyxyτασσ−×=−==−−−−,0α=-19.3°13max37273222MPaMPaσστ−+===(2)图解法作应力圆如题7.4图(f1)所示。应力圆与σ轴的两个交点的坐标即是主应力1σ、3σ的数值。由xCD,顺时针旋转02α,可确定主平面的方位。xCD的长度即为最大切应力的数值。主应力单元体如题7.4图(f2)所示。7.14在通过一点A的两个平面上,应力如题7。14图(a)所示,单位为MPa。试求主应力的数值及主平面的位置,并用单元体的草图表示出来。8解在题7。14图(b)中,斜截面AC与x平面的夹角175a=。,其上的应力1195,253aaMPaMPaστ==。斜截面AB与x平面的夹角2105a=。,其上应力225,253aaMPaMPaστ==4。将这些数据代入斜截面上应力公式中,对AB斜截面有cos210sin2104522xyxyxyσσσστ+−+−=。。①sin210cos2102532xyxyσστ−+=。。②对AC斜截面有cos150sin1509522xyxyxyσσσστ+−+−=。。③sin150cos1502532xyxyσστ−+=。。④将①-④式中任三个联立,即可求解出。譬如联立①②④式得45(0.866)0.522xyxyxyσσσστ+−=+−−⑤43.3(0.5)0.8662xyxyσστ−=−−⑥943.3(0.5)0.8662xyxyσστ−=−⑦由⑥+⑦式得86.61.732,50xyxyMPaττ=−=−将xyτ值代入⑤⑥式可解得70xyMPaσσ==主应力与主平面位置:}maxmin22()22xyxyxyσσσσσστ+−=±+{221202070707070()(50)22MPaMPaMPa⎡⎤++=±+−=⎢⎥⎣⎦按照主应力得记号规定123120,20,0MPaMPaσσσ===0022(50)tan2,457070xyxyaaτσσ×−=−=−=∞=−−。单元体草图如题7。14图(c)所示。7.25如题所示,列车通过钢桥时,在钢桥横梁的A点用变形仪量得0.0004xε=,0.00012yε=−。试求A点在xx−及yy−方向的正应力。设E=200GPa,0.3μ=。并问这样能否求出A点主应力?解:根据广义胡克定律yyxxEEEσσσεμ⎛⎞⎟⎜=−+⎟⎜⎟⎜⎝⎠yzxyEEEσσσεμ⎛⎞⎟⎜=−+⎟⎜⎟⎜⎝⎠因0zσ=,所以将测得的xε、yε值代入上二式,得0.00040.3yxEEσσ=−×①0.00040.3yxEEσσ=−×②联立①、②式,求得80xσ=MPa,0yσ=因xyτ未知,故不能求出主应力。7.27从钢构件内某一点的周围取出一单元体,如题7.27图(a)所示。根据理论计算已求得30σ=MPa,15π=MPa。材料的E=200GPa,0.30μ=。试求对角线AC的长度改变lΔ。10解:欲求对角线AC的长度改变lΔ,必须先知道AC方向上的应变,沿AC方向取单元体,如题7.27图(b)所示。该单元体上除正应力外,还有切应力,但它对线应变不产生影响。()()()cos230sin23022nσσστ=+×−−×DD3030cos6015sin6022⎛⎞⎟⎜=++⎟⎜⎟⎜⎝⎠DDMPa=35.5MPa()()()1cos2120sin212022σσστ=+×−−×DD3030cos24015sin24022⎛⎞⎟⎜=++⎟⎜⎟⎜⎝⎠DDMPa=-5.49MPa对角线方向的应变()()691135.50.335.491020010nntEεσμσ=−=+×××618710−=×所以对角线AC的伸长量36251018710sin30ACnllε−−⎛⎞×⎟⎜Δ==××⎟⎜⎟⎜⎟⎜⎝⎠Dm39.3510−=×mm7.37铸铁薄管如题7.37图所示。管的外径为200mm,壁厚15δ=mm,内压p=4MPa,F=200KN。铸铁的抗拉及抗压许用应力分别为[]30tσ=MPa,[]120cσ=MPa,0.25μ=。试用第二强度理论及莫尔强度理论校核薄管的强度。解:周向应力()63341020021510221510pdσδ−−××−××′==××Pa=22.7MPa轴向应力4FpdAσδ′′=−+()()63333341020021510200102001510151041510π−−−−⎡⎤××−×××⎢⎥=−+⎢⎥−×××××⎣⎦Pa11.6=−MPa径向应力4pσ′′′=−=−MPa按照主应力的记号规定11122.7σ=MPa,24σ=−MPa,311.6σ=−MPa按第二强度理论校核()()[]212322.70.2511.64rσσμσσ=−+=−×+MPa=26.6MPa[]tσ按莫尔强度理论校核p[][]()1322.70.2511.6trMcσσσσσ=−=+×MPa=25。6MPa[]tσ按两种强度理论校核,都满足强度要求。7.38钢制圆筒形薄壁容器,直径为800mm,壁厚4δ=mm,[]120σ=MPa。试用强度理论确定可能承受的内压力p。解:周向应力2pdσδ′=轴向应力4pdσδ′′=径向应力0σ′′′=按主应力记号规定1800100224pdppσσδ′====×280050444pdppσσδ′′====×30σσ′′′=≈根据第三强度理论13σσ−≤[]σ,02pdδ−≤[]σp≤[]332
本文标题:第七章应力状态习题答案
链接地址:https://www.777doc.com/doc-5410896 .html