您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 高中物理整体法与隔离法
整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为mA、mB,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力FN。解析:这里有a、FN两个未知数,需要要建立两个方程,要取两次研究对象。比较后可知分别以B、(A+B)为对象较为简单(它们在水平方向上都只受到一个力作用)。可得FmmmFBABN点评:这个结论还可以推广到水平面粗糙时(A、B与水平面间μ相同);也可以推广到沿斜面方向推A、B向上加速的问题,有趣的是,答案是完全一样的。【例5】如图所示,质量为2m的物块A和质量为m的物块B与地面的摩擦均不计.在已知水平推力F的作用下,A、B做加速运动.A对B的作用力为多大?解析:取A、B整体为研究对象,其水平方向只受一个力F的作用根据牛顿第二定律知:F=(2m+m)aa=F/3m取B为研究对象,其水平方向只受A的作用力F1,根据牛顿第二定律知:F1=ma故F1=F/3点评:对连结体(多个相互关联的物体)问题,通常先取整体为研究对象,然后再根据要求的问题取某一个物体为研究对象.【例6】如图,倾角为α的斜面与水平面间、斜面与质量为m的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。求水平面给斜面的摩擦力大小和方向。解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。可以先求出木块的加速度cossinga,再在水平方向对质点组用牛顿第二定律,很容易得到:cos)cos(sinmgFf如果给出斜面的质量M,本题还可以求出这时水平面对斜面的支持力大小为:FN=Mg+mg(cosα+μsinα)sinα,这个值小于静止时水平面对斜面的支持力。【例7】如图所示,mA=1kg,mB=2kg,A、B间静摩擦力的最大值是5N,水平面光滑。用水平力F拉B,当拉力大小分别是F=10N和F=20N时,A、B的加速度各多大?解析:先确定临界值,即刚好使A、B发生相对滑动的F值。当A、B间的静摩擦力达到5N时,既可以认为它们仍然保持相对静止,有共同的加速度,又αABF可以认为它们间已经发生了相对滑动,A在滑动摩擦力作用下加速运动。这时以A为对象得到a=5m/s2;再以A、B系统为对象得到F=(mA+mB)a=15N(1)当F=10N15N时,A、B一定仍相对静止,所以2BABA3.3m/smmFaa(2)当F=20N15N时,A、B间一定发生了相对滑动,用质点组牛顿第二定律列方程:BBAAamamF,而aA=5m/s2,于是可以得到aB=7.5m/s2【例8】如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a=21g,则小球在下滑的过程中,木箱对地面的压力为多少?命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B级要求.错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.解题方法与技巧:解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m为研究对象,受重力mg、摩擦力Ff,如图2-4,据牛顿第二定律得:mg-Ff=ma①取木箱M为研究对象,受重力Mg、地面支持力FN及小球给予的摩擦力Ff′如图.据物体平衡条件得:FN-Ff′-Mg=0②且Ff=Ff′③由①②③式得FN=22mMg由牛顿第三定律知,木箱对地面的压力大小为FN′=FN=22mMg.解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:(mg+Mg)-FN=ma+M×0故木箱所受支持力:FN=22mMg,由牛顿第三定律知:
本文标题:高中物理整体法与隔离法
链接地址:https://www.777doc.com/doc-5410970 .html