您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【高中数学】随机事件的概率专题讲义(附练习题及答案)强烈推荐!
作者:秦老师特级教师(武汉新创教育内部资料)作者:秦老师特级教师(武汉新创教育内部资料)概率-随机事件的概率关键词:概率频率随机事件互斥事件对立事件学习目标:理解概率的意义,掌握概率的一些基本概念,会求古典概型。知识点讲解1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。2.随机事件的概率事件A的概率:在大量重复进行同一试验时,事件A发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A发生或事件B发生,则此事件称为事件A与事件B的并事件。注:当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+A)=P(A)+P(A)=1。(2)交事件(积事件)若某事件的发生是事件A发生和事件B同时发生,则此事件称为事件A与事件B的交事件。5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A;一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n1。如果某个事件A包含的结果有m个,那么事件A的概率P(A)=nm。典例解析题型1:随机事件的定义例1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;作者:秦老师特级教师(武汉新创教育内部资料)作者:秦老师特级教师(武汉新创教育内部资料)(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.解析:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件。点评:熟悉必然事件、不可能事件、随机事件的联系与区别。针对不同的问题加以区分。例2.(1)如果某种彩票中奖的概率为10001,那么买1000张彩票一定能中奖吗?请用概率的意义解释。解析:不一定能中奖,因为,买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖。点评:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。(2)在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。解析:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。点评:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。题型2:频率与概率例3.某种菜籽在相同在相同的条件下发芽试验结果如下表:(求其发芽的概率)种子粒数251070130310700150020003000发芽粒数24960116282639133918062715解析:我们根据表格只能计算不同情况下的种子发芽的频率分别是:1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905。随着种子粒数的增加,菜籽发芽的频率越接近于0.9,且在它附近摆动。故此种子发芽的概率为0.9。点评:我们可以用频率的趋向近似值表示随机事件发生的概率。例4.进行这样的试验:从0、1、2、…、9这十个数字中随机取一个数字,重复进行这个试验10000次,将每次取得的数字依次记下来,我们就得到一个包括10000个数字的“随机数表”.在这个随机数表里,可以发现0、1、2、…、9这十个数字中各个数字出现的频率稳定在0.1附近.现在我们把一个随机数表等分为10段,每段包括1000个随机数,统计每1000个随机数中数字“7”出现的频率,得到如下的结果:段序:n=100012345678910出现“7”的频数95889511295998289111102作者:秦老师特级教师(武汉新创教育内部资料)作者:秦老师特级教师(武汉新创教育内部资料)出现“7”的频率0.0950.0880.0950.1120.0950.0990.0820.0890.1110.102由上表可见,每1000个随机数中“7”出现的频率也稳定在0.1的附近.这就是频率的稳定性.我们把随机事件A的频率P(A)作为随机事件A的概率P(A)的近似值。点评:利用概率的统计定义,在计算每一个随机事件概率时都要通过大量重复的试验,列出一个表格,从表格中找到某事件出现频率的近似值作为所求概率。这从某种意义上说是很繁琐的。题型3:随机事件间的关系例5.(1)某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是()(A)至多有一次中靶(B)两次都中靶(C)两次都不中靶(D)只有一次中靶答案:C。点评:根据实际问题分析好对立事件与互斥事件间的关系。(2)把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。事件“甲分得1号球”与事件“乙分得1号球”是()(A)互斥但非对立事件(B)对立事件(C)相互独立事件(D)以上都不对答案:A。点评:一定要区分开对立和互斥的定义,互斥事件:不能同时发生的两个事件叫做互斥事件;对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件。例7.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。解析:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],事件A由4个基本事件组成,因而,P(A)=64=32。课堂练习:1.下列试验能够构成事件的是A.掷一次硬币B.射击一次C.标准大气压下,水烧至100℃D.摸彩票中头奖2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是A.必然事件B.不可能事件C.随机事件D.以上选项均不正确3.随机事件A的频率nm满足A.nm=0B.nm=1C.0nm1D.0≤nm≤14.下面事件是必然事件的有①如果a、b∈R,那么a·b=b·a②某人买彩票中奖③3+510A.①B.②C.③D.①②5.下面事件是随机事件的有:①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③作者:秦老师特级教师(武汉新创教育内部资料)作者:秦老师特级教师(武汉新创教育内部资料)在标准大气压下,水在1℃时结冰.A.②B.③C.①D.②③课后作业:1.甲、乙2人下棋,下成和棋的概率是21,乙获胜的概率是31,则甲不胜的概率是A.21B.65C.61D.322.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”3.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品4.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是A.0.62B.0.38C.0.02D.0.685.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为A.0.09B.0.98C.0.97D.0.966.一枚硬币连掷3次,只有一次出现正面的概率是A.83B.32C.31D.417.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为A.51B.52C.103D.1078.某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效数字):(1)填写表中的男婴出生频率;(2)这一地区男婴出生的概率约是____.9.某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是.10.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是______.11.我国西部一个地区的年降水量在下列区间内的概率如下表所示:年降水量/mm[100,150)[150,200)[200,250)[250,300]概率0.210.160.130.12则年降水量在[200,300](mm)范围内的概率是_________答案:1.D2.C3.D4.A5.C时间范围1年内2年内3年内4年内新生婴儿数554490131352017191男婴数2716489968128590男婴出生频率1234567作者:秦老师特级教师(武汉新创教育内部资料)作者:秦老师特级教师(武汉新创教育内部资料)(1)BCBCDAB0.490.540.500.50(2)0.59.0.210.2次都不中11.0.25
本文标题:【高中数学】随机事件的概率专题讲义(附练习题及答案)强烈推荐!
链接地址:https://www.777doc.com/doc-5413708 .html