您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数y=ax2-的图像(第二课时)
二次函数y=ax2的图象和性质x…-3-2-10123…y解:(1)列表…9410149…(2)描点(3)连线12345x12345678910yo-1-2-3-4-5y=x2画最简单的二次函数y=x2的图象你还记得描点法画图像的一般步骤?描点法列表描点连线二次函数y=x2的图象是一条曲线,它的形状类似于投篮球时球在空中所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线y=x2,二次函数y=x2的图象是轴对称图形,一般地,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线y=ax2+bx+c12345x12345678910yo-1-2-3-4-5抛物线与它的对称轴的交点(0,0)叫做抛物线的顶点它是抛物线的最低点.2xy2xy2xy实际上,二次函数的图象都是抛物线,对称轴是y轴2xy这条抛物线是轴对称图形吗?如果是,对称轴是什么?抛物线与对称轴有交点吗?当x0时,y随x的增大而减小;当x0时,y随x的增大而增大x…-4-3-2-101234…y=x2例1.在同一直角坐标系中画出函数y=x2和y=2x2的图象解:(1)列表(2)描点(3)连线12345x12345678910yo-1-2-3-4-5128…20.500.524.58…4.512xy=2x28…………-2-1.5-1-0.500.511.524.520.500.524.5812345x12345678910yo-1-2-3-4-5函数y=x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?12共同点:不同点:开口都向上;顶点是原点而且是抛物线的最低点,对称轴是y轴开口大小不同;|a|越大,在对称轴的左侧,y随着x的增大而减小。在对称轴的右侧,y随着x的增大而增大。抛物线的开口越小。探究画出函数的图象.2222,21,xyxyxyx1y解:(1)列表(2)描点(3)连线x…-2-1.5-1-0.500.511.52…y=-x2y=-x2y=-2x212………………-4-2.25-1-0.25000-0.25-1-2.25-4-2-2-8-8-2-2-0.5-0.5-0.5-0.5-1.125-1.125-0.125-0.125-4.5-4.5-1-2-30123-1-2-3-4-52xy221xy22xyx1y-1-2-30123-1-2-3-4-5函数y=-x2,y=-2x2的图象与函数y=-x2(图中蓝线图形)的图象相比,有什么共同点和不同点?12共同点:开口都向下;不同点:顶点是原点而且是抛物线的最高点,对称轴是y轴开口大小不同;|a|越大,221xy2xy22xy在对称轴的左侧,y随着x的增大而增大。在对称轴的右侧,y随着x的增大而减小。抛物线的开口越小.对比抛物线,y=x2和y=-x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=-ax2呢?在同一坐标系内,抛物线与抛物线是关于x轴对称的.2axy2axy2xy2xy22xy232xy1、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)。(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y0.232xy(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小0y=ax2(a≠0)a0a0图象开口方向顶点坐标对称轴增减性最值xyOyxO向上向下(0,0)(0,0)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由|a|来确定的,一般说来,|a|越大,当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。抛物线的开口就越小.|a|越小,抛物线的开口就越大.范例例、已知二次函数的图形经过点(-2,-3)。(1)求a的值,并写出函数解析式;(2)说出函数图象的顶点坐标、对称轴、开口方向;巩固1、若抛物线的开口向下,求n的值。n=-1巩固2、若抛物线上点P的坐标为(2,-24),则抛物线上与P点对称的点P’的坐标为。(-2,-24)巩固3、若m0,点(m+1,y1)、(m+2,y2)、y1、y2、y3的大小关系是。(m+3,y3)在抛物线上,则y1y2y34已知点A(-1,y1),B(2,y2),C(4,y3),都在y=(a2+1)x2上,比较y1,y2,y3的大小?5如图所示函数y=ax2与y=ax+a的图像大致是()6、已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于B,C两点,已知B点的坐标为(1,1),(1)求直线和抛物线的表达式,(2)如果抛物线上的一点使得△AOD与△BOC的面积相等,求D点的坐标?作业:课本第16页习题26.1第3、4题下课了!
本文标题:二次函数y=ax2-的图像(第二课时)
链接地址:https://www.777doc.com/doc-5449322 .html