您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学_3[1].3.1《函数的单调性与导数》课件_新人教A版选修1-1
3.3.1函数的单调性与导数单调性的概念:对于给定区间上的函数f(x):1.如果对于这个区间上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.2.如果对于这个区间上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数对于函数y=f(x)在某个区间上单调递增或单调递减的性质,叫做f(x)在这个区间上的单调性,这个区间叫做f(x)的单调区间。一、复习引入:(1)函数的单调性也叫函数的增减性;(2)函数的单调性是对某个区间而言的,它是个局部概念。这个区间是定义域的子集。(3)单调区间:针对自变量x而言的。若函数在此区间上是增函数,则为单调递增区间;若函数在此区间上是减函数,则为单调递减区间。以前,我们用定义来判断函数的单调性.在假设x1x2的前提下,比较f(x1)f(x2)与的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如果利用导数来判断函数的单调性就比较简单.oyxyox1oyx1xy1122xxyxy3在(-∞,0)和(0,+∞)上分别是减函数。但在定义域上不是减函数。在(-∞,1)上是减函数,在(1,+∞)上是增函数。在(-∞,+∞)上是增函数画出下列函数的图象,并根据图象指出每个函数的单调区间观察:下图(1)表示高台跳水运动员的高度h随时间t变化的函数的图象,图(2)表示高台跳水运动员的速度v随时间t变化的函数的图象.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?105.69.4)(2ttth5.69.4)(ttvaabbttvhOO①运动员从起跳到最高点,离水面的高度h随时间t的增加而增加,即h(t)是增函数.相应地,()()0.vtht②从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即h(t)是减函数.相应地,.0)()(thtv(1)(2)xyOxyOxyOxyOy=xy=x2y=x3xy1观察上面一些函数的图象,探讨函数的单调性与其导函数正负的关系.二、新课讲解:ox1y1.在x=1的左边函数图像的单调性如何?2.在x=1的左边函数图像上的各点切线的倾斜角为(锐角/钝角)?他的斜率有什么特征?3.由导数的几何意义,你可以得到什么结论?4.在x=1的右边时,同时回答上述问题。xyOxyOxyOxyOy=xy=x2y=x3xy1观察下面一些函数的图象,探讨函数的单调性与其导函数正负的关系.在某个区间(a,b)内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.()0fx()yfx()0fx()yfx定理:一般地,函数y=f(x)在某个区间内可导:如果恒有f′(x)0,则f(x)是增函数。如果恒有f′(x)0,则f(x)是减函数。如果恒有f′(x)=0,则f(x)是常函数。例1已知导函数的下列信息:当1x4时,当x4,或x1时,当x=4,或x=1时,)(xf;0)(xf;0)(xf.0)(xf试画出函数的图象的大致形状.)(xf解:当1x4时,可知在此区间内单调递增;()0,fx()fx当x4,或x1时,可知在此区间内单调递减;,0)(xf)(xf当x=4,或x=1时,.0)(xf综上,函数图象的大致形状如右图所示.)(xfxyO14“临界点”p92例3如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(A)(B)(C)(D)htOhtOhtOhtO注:一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.如图,函数在或内的图象“陡峭”,在或内的图象平缓.)(xfy),0(b)0,(a),(b),(a例2判断下列函数的单调性,并求出单调区间:;32)()2(;3)()1(23xxxfxxxf);,0(,sin)()3(xxxxf.12432)()4(23xxxxf解:(1)因为,所以3()3fxxx.0)1(333)(22xxxf因此,函数在上单调递增.xxxf3)(3Rx(2)因为,所以2()23fxxx).1(222)(xxxf当,即时,函数单调递增;0)(xf1x32)(2xxxf当,即时,函数单调递减.0)(xf1x32)(2xxxf解:(3)因为,所以()sin,(0,)fxxxx.01cos)(xxf因此,函数在上单调递减.xxxfsin)(),0(x(4)因为,所以32()23241fxxxx当,即时,函数单调递增;0)(xf21712171xx或)(xf当,即时,函数单调递减.0)(xf2466)(2xxxf21712171x)(xf变式求证:函数在内是减函数.762)(23xxxf解:32()267fxxx2()612.fxxx)2,0(由,解得,所以函数的递减区间是,即函数在内是减函数.0)(xf20x)(xf)2,0()2,0()(xf2、已知函数f(x)=ax³+3x²-x+1在R上是减函数,求a的取值范围。练习1.判断下列函数的单调性,并求出单调区间:;)()2(;42)()1(2xexfxxxfx.)()4(;3)()3(233xxxxfxxxf练习2.讨论二次函数的单调区间.)0()(2acbxaxxf解:2()(0)fxaxbxca()2.fxaxb0)1(a由,得,即函数的递增区间是;相应地,函数的递减区间是0)(xfabx2)(xf),2(ab)2,(ab0)2(a由,得,即函数的递增区间是;相应地,函数的递减区间是0)(xfabx2)(xf),2(ab)2,(ab1、求可导函数f(x)单调区间的步骤:(1)求f’(x)(2)解不等式f’(x)0(或f’(x)0)(3)确认并指出递增区间(或递减区间)2、证明可导函数f(x)在(a,b)内的单调性的方法:(1)求f’(x)(2)确认f’(x)在(a,b)内的符号(3)作出结论总结小结:定理:一般地,函数y=f(x)在某个区间内可导:如果恒有,则f(x)在是增函数。如果恒有,则f(x)是减函数。如果恒有,则f(x)是常数。步骤:(1)求函数的定义域(2)求函数的导数(3)令f’(x)0以及f’(x)0,求自变量x的取值范围,即函数的单调区间。f’(x)0f’(x)0f’(x)=0练习函数的图象如图所示,试画出导函数图象的大致形状)(xfy)(xf补充练习:1、判断下列函数的单调性(1)f(x)=x3+3x;(2)f(x)=sinx-x,x∈(0,π);(3)f(x)=2x3+3x2-24x+1;(4)f(x)=ex-x;
本文标题:高中数学_3[1].3.1《函数的单调性与导数》课件_新人教A版选修1-1
链接地址:https://www.777doc.com/doc-5451398 .html