您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 第八章-隧道监测方案设计
8隧道监测方案设计8.1隧道监控量测的目的大青山一号隧道采用新奥法施工,该施工方法的特点之一是注重现场监控量测,既要允许围岩产生一定的变形,又要防止围岩产生过大的变形,并利用检测结果及时补充设计和指导施工。隧道检测的目的如下:(1)掌握围岩动态,了解支护结构在不同情形下的受力状态,并对围岩的稳定性作出评价;(2)验证支护结构型式、支护参数的合理性,评价支护结构、施工方法的合理性和安全性;(3)优化施工组织设计,指导现场施工,确保隧道施工的安全和工程项目的经济、社会、环境效益;(4)为节省工程投资,提高隧道的设计和施工水平提供科学依据和技术保证。8.2隧道监控量测的内容为及时提供施工所需的围岩稳定程度和支护结构的受力状态,保证施工安全和提高施工效率,根据公路隧道设计规范,将施工监控量测分为必测项目和选测项目。(1)必测项目:必测项目包括围岩地质和支护状况观察、拱顶下沉量测、周边收敛位移量测和地表沉降观测等。这类量测是为了确保在施工过程中围岩稳定和施工安全。量测密度大,工作量大,量测信息直观可靠,贯穿在整个施工过程中。(2)选测项目:选测项目包括围岩内部位移量测、锚杆轴力量测、围岩与喷射混凝土间接触压力量测、喷射混凝土与二次衬砌间接触压力量测、喷射混凝土内应力量测、二次衬砌内应力量测、钢支撑内力量测、衬砌裂缝及表面应力量测。这类量测是对必测项目的扩展和补充,对特殊地段或有代表性的地段进行量测,以便更深入的掌握围岩稳定状态与支护效果。选择项目安装埋设比较麻烦,量测项目较多、时间长、费用较大、但工程竣工后还可以进行长期观测。8.3隧道监控量测方法8.3.1围岩地质和支护状况观察所谓隧道工程地质和支护状况观察,就是通过观察实际揭露的隧道掌子面地质情况,掌握隧道的实际围岩状态,分析隧道掌子面的稳定状态,预测前方隧道围岩情况,并提出必要的预警;通过观察隧道洞内初期支护的状态,及时发现各种异常现象并进行观察,评价初期支护的稳定性。(1)观察方法隧道掌子面的地质情况采用目测、地质罗盘和锤击检查进行观测,及时绘制掌子面地质素描,记录围岩的岩性、产状等详细特征,断层。破碎带等不良地质特征,地下水的水量。压力等特征,填写掌子面地质观察记录。隧道初期支护状况采用目测观察为主,对初期支护中的喷射混凝土、钢支撑,锚杆出现的外鼓、裂缝、扭曲等异常现象,进行跟踪观测并做好原始记录。观测中,如果发现异常现象,要详细记录发现的时间、距开挖工作面的距离以及附近测点的各项量测数据。(2)观察频率隧道工程地质和支护状况观察应在隧道开挖及初期支护后进行,每次开挖后需进行掌子面地质情况观察,每个监测断面应绘制隧道开挖工作面及素描剖面图。8.3.2周边收敛位移量测隧道周边或结构物内部净空尺寸的变化,通常称为收敛位移。隧道周边收敛位移量测其实是一种相对位移量测。(1)测点和测线布置隧道收敛位移的量测测点原则上应布置在同一断面上,两个测点之间的连线为量测基线,即测线。在本设计中,测线选择2条。在公路隧道中,一般沿着隧道周边的拱顶、拱腰和边墙部位分别埋设测桩作为测点,测桩为带挂钩的预埋件,埋设方法为:埋设前先用小型钻机在待测部位成孔,然后将测桩放入,用快凝水泥或早强锚固剂固定,测桩头需设保护罩。测点和测线布置示意图如图8.1所示周边收敛测线收敛测点拱顶下沉测点收敛测点收敛测点拱顶下沉测线隧道中线图8.1隧道周边收敛位移测点及测线布置示意图(2)量测断面间距隧道收敛位移的量测断面间距根据表8.1确定:表8.1隧道收敛位移量测断面间距取值范围围岩级别Ⅴ级Ⅳ级Ⅲ级断面间距5-10m10-20m20-30m(3)量测频率隧道收敛位移的量测频率取值根据表8.2确定:表8.2隧道收敛位移量测频率取值范围按开挖后时间1-15d16-30d31-90d>90d按与开挖面距离<2B(2-5)B(5-10)B≥10B按变形速率≥1.0mm/d0.5-1.0mm/d0.1-0.5mm/d<0.1mm/d量测频率1-3次/d1次/2d1-2次/w1-3次/m注:B为隧道跨度,d为天,w为周,m为月。8.3.3拱顶下沉量测(1)测点布置、量测断面间距、量测频率隧道拱顶下沉测点和收敛位移测点布置在同一断面上,以方便进行数据分析。拱顶下沉测点埋设在拱部围岩和支护结构表面上,每个断面上布置3个测点,测点和测线布置示意图如图8.1所示。其量测断面间距、量测频率的取值范围与收敛位移量测相同,分别见表8.1和表8.2。8.3.4地表沉降观测在隧道洞口浅埋地段,应进行地表沉降观测。(1)断面和测点布置地表沉降观测的断面及测点按表8.3进行布置。表8.3地表沉降测点布置覆土厚度H与隧道跨度B的关系3B>H≥2B2B>H≥BH<B纵向测点间距15-25m10-15m5-10m横断面间距30-50m20-30m15-20m每个断面布置7-15个点,测点按隧道中线两侧在3倍隧道跨度范围布置。(2)观测频率地表沉降观测的量测频率根据表8.4进行取值表8.3地表沉降观测频率取值范围开挖面距地表观测断面距离<2B2B-5B>5B量测频率1-2次/d1次/(2-3)d1-2次/w8.3.5围岩内部位移量测围岩内部位移量测,就是观测围岩表面、内部各测点间的相对位移值,它能较好地反映出围岩受力的稳定状态,岩体扰动与松动范围。(1)断面和测点布置在每一级围岩段选择埋深最大的截面作为量测断面。对于公路隧道,一般可沿隧道围岩周边分别在拱顶、拱腰和边墙共打5个测孔。位移量测布置示意图如图8.2所示:12341432123412341234四点式位移计图8.2围岩内部位移量测布置示意图(2)量测频率隧道围岩内部位移的量测频率根据表8.5进行取值。表8.5隧道围岩内部位移量测频率取值范围开挖后时间1-15d16-30d31-90d>90d量测频率1-2次/d1次/2d1-2次/w1-3次/m8.3.6锚杆轴力量测为监测锚杆的受力大小,充分了解锚杆的工作状态,对锚杆轴力进行量测。掌握了锚杆轴力及其应力分布状态,再配合围岩内部位移的量测结果,就可以优化锚杆长度及根数,同时还可以掌握围岩内应力重分布过程。(1)断面和测点布置在每一级围岩段选择埋深最大的截面作为量测断面,每一监测断面选取5根量测锚杆,分别布置在拱顶中央,拱腰及边墙处,每一量测锚杆设置4个测点。锚杆轴力量测布置示意图如图8.3所示:12341432123412341234锚杆应力(应变)计图8.3锚杆轴力量测量测布置示意图(2)量测频率锚杆轴力的量测频率根据表8.6进行取值。表8.6锚杆轴力量测频率取值范围埋设后时间1-15d16-30d31-90d>90d量测频率1-2次/d1次/2d1次/w1次/m8.3.7围岩与支护间接触压力量测在围岩与初期支护(喷射混凝土)之间埋设压力计,用以量测围岩与初期支护间的接触压力,即围岩压力。在初期支护与二次衬砌之间埋设压力计,用以量测初期支护与二次衬砌间的接触压力。(1)断面、测点布置及量测频率量测断面的选择、测点布置以及量测频率均与锚杆轴力量测相同。8.3.8喷射混凝土层应力、应变量测(1)断面和测点布置在每一级围岩段选择埋深最大的截面作为量测断面,每一量测断面应沿隧道的拱顶、拱腰及边墙布设5个测点,通过混凝土喷层应力计,测出每个测点的环向应力和切向应力。围岩初喷以后,在初喷面上将喷层应力计固定,再复喷,将喷层应力计全部覆盖并使应力计居于喷层的中央,方向为切向。喷射混凝土达到初凝时开始读测取读数。测量喷射混凝土层的应变采用应变砖量测法。量测断面的测点布置位置示意图如图8.4所示:监测元件图8.4喷射混凝土层测点布置示意图8.3.9二次衬砌应力、应变量测(1)断面和测点布置在每一级围岩段选择埋深最大的截面作为量测断面,监测元件的布置位置与混凝土喷层应力计布置位置相同,见图8.4.8.3.10钢支撑应力、应变量测(1)断面和测点布置在每一级围岩段选择埋深最大的截面作为量测断面,监测元件的布置位置与混凝土喷层应力计布置位置相同,见图8.4.8.4监测数据的分析8.4.1位移量测数据的分析(1)极限相对位移值极限相对位移值(U0)是指拱顶下沉的最大值相对隧道高度的百分比或水平净空变化最大值相对隧道开挖宽度的百分比。极限相对位移值主要用于判断量测数据的可靠性、确定初期支护的稳定性、判断监控量测的结束时间等。大青山一号隧道跨度B=12.14m,对于跨度大于12m的隧道,目前还没有统一的位移判定基准,应在施工中通过实测资料积累经验。(2)允许相对位移值隧道初期支护允许相对位移值根据测点距开挖面的距离,并通过初期支护极限相对位移按表8.7确定:表8.7隧道初期支护允许相对位移类别距开挖面1B(U1B)距开挖面2B(U2B)距开挖面较远允许值65%U090%U0100%U0(3)围岩变形等级管理隧道监控量测的主要目的就是保证施工的安全,因此,对监控量测实施三级管理。a.通过允许相对位移值管理通过允许相对位移值来进行围岩等级管理,见表8.8:表8.8围岩位移等级管理a等级管理距开挖面1B距开挖面2B采取措施Ⅲ级U<U1B/3U<U2B/3可减少监测频率,继续施工Ⅱ级U1B/3≤U≤2U1B/3U2B/3≤U≤2U2B/3加强监测频率,加强支护措施Ⅰ级U≥2U1B/3U≥2U2B/3加强监测频率,暂停掘进施工注:U为实测位移值。b.通过位移速度变化率管理通过位移速度变化率来进行围岩等级管理,见表8.9:表8.9围岩位移等级管理b等级管理位移速度采取措施Ⅲ级不断下降可减少监测频率,继续施工Ⅱ级保持不变加强监测频率,加强支护措施Ⅰ级不断上升加强监测频率,暂停掘进施工(4)量测结束时间的确定当下列条件同时满足时,可以结束某一断面的监控量测:a.测点距开挖面距离不大于5B;b.当净空变化速度小于0.2mm/d,拱顶下沉速度小于0.15mm/d,且持续时间不少于15d。8.4.2受力量测数据的分析a.锚杆轴力量测的分析根据隧道工程的实际调查,可以发现:①同一断面内,锚杆轴力最大值大多发生在拱部45°附近到起拱线之间的锚杆;②拱顶锚杆,不管净空位移值大小,出现压力的情况是较多的情况;③锚杆轴力超过屈服强度时,水平净空位移值一般都超过50mm。当锚杆轴力大于锚杆屈服强度时,可增加锚杆数量或增大锚杆直径以降低锚杆应力,也可直接采用高强度锚杆。b.围岩压力量测的分析围岩压力大,表明初期支护受力大,这可能有两种情况:①围岩压力大但围岩变形量不大,表明支护时机选择不当,尤其是仰拱的封底时间过早,此时应延迟支护和仰拱封底时机,让围岩应力得到较大的释放;②围岩压力大,围岩变形量也很大,此时应加强支护,控制围岩变形。当测得的围岩压力很小但是变形量很大时,则应考虑是否会出现围岩失稳。c.喷射混凝土层应力量测的分析喷射混凝土层压力与围岩压力密切相关,喷层应力大,可能是由于支护不足,也可能是由于仰拱封底过早,其分析与围岩压力的分析大致相似。当喷层应力大时,喷层会出现明显裂损,应加大喷层厚度或控制混凝土喷射质量。若喷层厚度已较大时,可通过增加锚杆数量、调整锚杆参数以减少喷层的受力。如测得最终喷层内的应力较大且达不到安全规定时,必须进一步加大喷层厚度或改变二次支护的时机。
本文标题:第八章-隧道监测方案设计
链接地址:https://www.777doc.com/doc-5463649 .html