您好,欢迎访问三七文档
专业教育资料1考纲解读明方向考点内容解读要求高考示例常考题型预测热度计数原理、排列、组合(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题(2)排列与组合①理解排列、组合的概念;②能利用计数原理推导排列数公式、组合数公式;③能解决简单的实际问题掌握2017天津,14;2016课标全国Ⅱ,5;2016课标全国Ⅲ,12;2015四川,6;2014安徽,8选择题★★☆分析解读1.分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个事件来完成,两个原理的区别在于一个与分类有关,一个与分步有关,这两个原理是最基本也是最重要的原理,是解答排列与组合问题,尤其是解答较复杂的排列与组合问题的基础.2.理解排列、组合及排列数与组合数公式,排列与组合的综合是高频考点.本节在高考中单独考查时,以选择题、填空题的形式出现,分值约为5分,属中档题;本节内容还经常与概率、分布列问题相结合,出现在解答题的第一问中,难度中等或中等偏上.考点内容解读要求高考示例常考题型预测热度二项式定理的应用能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题掌握2017课标全国Ⅰ,6;2016课标全国Ⅰ,14;2015课标Ⅰ,10选择题填空题★★★分析解读1.掌握二项式定理和二项展开式的性质.2.会用二项式定理的知识解决系数和、常数项、整除、专业教育资料2近似值、最大值等相关问题.3.二项展开式的通项公式是高考热点.本节在高考中一般以选择题或填空题形式出现,分值约为5分,属容易题.2018年高考全景展示1.【2018年全国卷Ⅲ理】的展开式中的系数为A.10B.20C.40D.80【答案】C点睛:本题主要考查二项式定理,属于基础题。2.【2018年浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260【解析】分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.3.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为点睛:求二项展开式有关问题的常见类型及解题策略:专业教育资料3(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.4.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.【2018年理新课标I卷】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到至多至少问题时多采用间接法,总体方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.2017年高考全景展示1.【2017课标1,理6】621(1)(1)xx展开式中2x的系数为A.15B.20C.30D.35【答案】C专业教育资料4【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r不同.2.【2017课标3,理4】52xyxy的展开式中x3y3的系数为A.80B.40C.40D.80【答案】C【解析】试题分析:555222xyxyxxyyxy,由52xy展开式的通项公式:5152rrrrTCxy可得:当3r时,52xxy展开式中33xy的系数为33252140C,当2r时,52yxy展开式中33xy的系数为22352180C,则33xy的系数为804040.故选C.【考点】二项式展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.3.【2017课标II,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【答案】D专业教育资料5【考点】排列与组合;分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步。具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)。4.【2017浙江,16】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答)【答案】660【解析】试题分析:由题意可得:总的选择方法为411843CCC种方法,其中不满足题意的选法有411643CCC种方法,则满足题意的选法有:411411843643660CCCCCC种.【考点】排列组合的应用【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.5.【2017浙江,13】已知多项式1x32x2=5432112345xaxaxaxaxa,则4a=________,5a=________.【答案】16,4【解析】试题分析:由二项式展开式可得通项公式为:32rrmmCxCx,分别取0,1rm和1,0rm可得441216a,令0x可得325124a【考点】二项式定理专业教育资料6【名师点睛】本题主要考查二项式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1rnrrrnTCab;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.6.【2017天津,理14】用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】413454541080ACCA【考点】计数原理、排列、组合【名师点睛】计数原理包含分类计数原理(加法)和分步计数原理(乘法),组成四位数至多有一个数字是偶数,包括四位数字有一个是偶数和四位数字全部是奇数两类,利用加法原理计数.2016年高考全景展示1.【2016高考新课标2理数】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24(B)18(C)12(D)9【答案】B考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之专业教育资料7间是相关联的.2.【2016年高考四川理数】设i为虚数单位,则6()xi的展开式中含x4的项为(A)-15x4(B)15x4(C)-20ix4(D)20ix4【答案】A【解析】试题分析:二项式6()xi展开的通项616rrrrTCxi,令64r,得2r,则展开式中含4x的项为2424615Cxix,故选A.考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()xi的展开式可以改为6()ix,则其通项为66rrrCix,即含4x的项为46444615Cixx.3.【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A)24(B)48(C)60(D)72【答案】D【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A种可能,所以其中奇数的个数为44372A,故选D.考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..4.【2016高考新课标3理数】定义“规范01数列”na如下:na共有2m项,其中m项为0,m项为1,且对任意2km,12,,,kaaa中0的个数不少于1的个数.若4m,则不同的“规范01数列”共有()(A)18个(B)16个(C)14个(D)12个【答案】C【解析】试题分析:由题意,得必有10a,81a,则具体的排法列表如下:00001111专业教育资料8101110110100111011010011010001110110100110考点:计数原理的应用.【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.5.【2016年高考北京理数】在6(12)x的展开式中,2x的系数为__________________.(用数字作答)【答案】60.【解析】试题分析:根据二项展开的通项公式16(2)rrrrTCx可知,2x的系数为226(2)60C,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n项、常数项、有理项
本文标题:高考(2016-2018)高考数学试题分项版解析专题26排列组合、二项式定理理(含解析)
链接地址:https://www.777doc.com/doc-5468499 .html