您好,欢迎访问三七文档
LiaoningNormalUniversity(2016届)本科生毕业论文(设计)题目:三门问题研究学院:数学学院专业:数学与应用数学(师范)班级序号:2班21号学号:201221010640学生姓名:赵楠指导教师:孙德山2016年5月i目录摘要(关键词)............................................................1Abstract(Keywords).....................................................1前言......................................................................11概率论发展简史..........................................................11.1概率论的起源........................................................11.2概率论的创立........................................................22三门问题的提出..........................................................22.1问题提出............................................................22.2有关三门问题的一个著名论述..........................................33三门问题解决策略........................................................33.1主持人知道门后内情..................................................43.2主持人不知道门后内情................................................44三门问题的推广..........................................................45三门问题的应用..........................................................66结论....................................................................7参考文献:.................................................................8致谢......................................................................9第1页三门问题研究摘要:本文首先介绍了概率论的起源和创立以及著名的三门问题(即蒙提霍尔问题)及其研究思路,并针对该问题利用贝叶斯公式计算得到了三门问题的正确解答。然后扩充条件将其拓展推广,得到了推广的三门问题。最后将该问题分析思路应用到生活中的二十点纸牌游戏中,得到了令人满意的结果。关键词:概率论;三门问题;蒙提霍尔;贝叶斯;Abstract:Inthispaper,wefirstintroducetheoriginofprobabilitytheoryandfoundedandthefamousthreedoorsproblem(i.e.theMontyHallproblem)andresearchideas,andtosolvetheproblemusingBayesianformulacalculatedthecorrectanswerstothethreedoorsproblem.Thenexpandtheconditionstoexpanditspromotion,thepromotionofthethreeissues.Atlast,theproblemisappliedtothetwentypointcardgameinthelife,andtheresultissatisfactory.Keywords:Probabilitytheory;threeproblems;MontyHolzer;Bayesian;前言三门问题也被叫做蒙提霍尔悖论,是一个起源于博弈论的数学博弈问题。三门问题具有思维欺骗性,因此也常常被心理学学者作为心理学问题来研究。本文主要从概率角度来分析三门问题,计算最优策略的概率。然后改变初始条件对三门问题进行拓展,计算更换初始选择与否的中奖概率。最后将三门问题进行推广,将所采用的分析方法应用到“二十点”游戏当中找到最优策略。本文介绍三门问题的背景来源和具体内容,指出贝叶斯定理及其实际意义,列举实例,具体问题具体分析,对主持人的行为假设给予明确的表述,这是进行正确推理的前提。采用文本范式和经验范式对三门问题进行研究,创建有利于被试正确表征问题的情景。从主持人决策影响猜奖者的角度分析问题,对解决我们现实生活中问题有至关重要的作用。1概率论发展简史1.1概率论起源概率论是研究随机现象数学规律的分支,是一门研究事情发生可能性的学问。但是最初概率论的起源与赌博问题有关。16世纪,意大利学者吉罗拉莫·卡尔达诺开始研究掷骰子等赌博中的一些简单问题。例如掷一枚骰子,出现各种点数的概率是多少。而概率论的正式创立却是在18世纪。中世纪末期,赌博开始出现在欧洲且风靡一时。一些职业赌徒为了获得取胜机会,刻意寻求其中规律。最初的问题是求“点数”,例如,掷三个骰,出现9点与出现10点那种可能性更大?据说,伽利略曾经解决过这类问题,用穷举法证明了掷三个骰子出现10点的可能性要比出现9点的可能性大(27:25)。真正引发数学家研究概率理论的是“合理分配赌注问题”。1494年意大利数学家帕乔利首次记载了这一问题:两个赌徒进行赌博,以先赢六次为胜,在甲赌徒赢了5次,乙赌徒赢了2次的情形下,赌博因故中断,那么总赌金应如何分配才合理。帕乔利认为按照5:2的比例分给两个赌徒的建议看似很合理,但若干年后,另一数学家卡尔达诺重新研究这一问题时提出疑问。卡尔达诺指出,不能以已赌过的局数作为依据去分配赌金,而是要考虑剩下未赌的局数。事实上甲赌徒只需要再赢一局即可得到全部赌金,而乙赌徒则需要连赢四局才能获得全部赌金。卡尔达诺分析:以后的赌博只有五种可能结果,即甲赌徒赢了第一局、赢第二局、赢第三局、赢第四局或者完全输掉,他认为总赌金应该按照(1+2+3+4):1的比例来分配才合理。卡尔达诺考虑问题的思路比帕乔利进了一步,但结论仍是错的。正确的答案是15:1,是一百多年后由帕斯卡和费马得出的。约1539年,卡尔达诺写成《掷骰游戏之书》(LiberdeLudoAleae),是现存最早的概率论专著。其中全面阐述了游戏中的数学道理,例如:掷骰、打牌,得到相当于现三门问题研究第2页在概率论中的大数定律、幂定律等一些基本命题。卡尔达诺一生有许多著作,对许多问题有新颖而独到的见解是第一个将数学理论应用于赌博研究的数学家之一。该论述在他生前没有得到发表,直到他去世近一百年的1663年才被收入《卡尔达诺全集》在莱顿出版,因而他在概率论史上影响较小。在1570年的文章中卡尔达诺还曾讨论过“人口死亡率”的问题。另外,同时代的数学家塔尔塔利亚也做过赌金分配的计算工作,知道掷骰时能得到一种点数的各种不同组合。1657年,荷兰数学家惠更斯所著的《论多种的计算》在莱顿出版,是目前已知最早公开发表的概率论文献。他在帕斯卡和费马的通信基础上,解决了许多赌博中可能出现的有趣的问题。并且引进了“数学期望”的概念,证明了:如果一个人获得赌金a的概率是p,他获得奖金b的概率是q,则他可以期望获得的赌金数是ap+bq。该论述成为概率论出现之前最早的代表作,对概率论的建立有较大影响。1.2概率论的创立1713年,雅克比·伯努利的名著《猜度数》出版,是概率论成为数学中的独立分支的一个重要标志。雅克比·伯努利建立了概率论中的第一个极限定理,即伯努利大数定律。棣莫弗是与伯努利同时代研究概率论的数学家。棣莫弗原籍法国,1685年移居英国,1679年22岁时成为皇家会员,1711年写成《抽签的测量》,1718年扩充为《机会学说》出版,后又多次再版,是概率论的早期著作之一。18世纪概率论和统计的研究逐渐吸引了大批数学家,相继得到了诸多成果。例如:英国数学家贝叶斯建立了条件概率的贝叶斯定理、法国数学家比丰于1777年出版了《能辨是非的算术试验》、1812年法国拉普拉斯所著《概率的分析理论》出版发行,其中首次明确规定了概率的古典定义,即讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,还在概率论中引入了更有力的分析工具,如差分方程,母函数等,从而实现了概率论由单纯的组合计算到分析方法的过渡,将概率论推向一个新的发展阶段。拉普拉斯增加了概率论在选举、审判调查、气象等方面的应用,论述了几何概率论、伯努利定律、和最小二乘法的讨论。至此,古典概率论的结构业已完成。19世纪后,概率论被广泛应用于自然科学甚至社会科学中。2三门问题的提出2.1问题提出在花样百出的猜奖活动中,能否猜中奖项要靠运气,大多数都没有技巧而言。但是在参与专门设计的抽奖时,如何获得最高奖项就有讲究了。三门问题就是经过设计的问题,它出自美国电视游戏节目Let’sMakeaDeal.其基本规则是猜奖者要从三扇封闭了的门中选择一扇并得到门后的奖品。其中两件是山羊,一件是跑车。该游戏的特别之处就在于当猜奖者当场选定一扇门未打开之前,主持人打开另外一扇后面是山羊的门,这是主持人问猜奖者是否需要改猜另外一扇门。问题是:换另外一扇门是否会增加猜奖者赢得跑车的机会?对于三门问题我们常见的有两种解答。解答一:更改选择获得跑车的概率23。理由是猜奖者第一次选择的门后有跑车的概率是13,所以跑车在其余两扇门后的概率是23,当主持人打开有山羊的一扇门后,跑车在剩下那扇门后的概率仍然是是23。换一种更容易理解的说法:假设现在在猜奖者面前有1000扇门,其中只有一扇门后是跑车,猜奖者第一次选择的门后有跑车的概率是11000,三门问题研究第3页当主持人打开藏有山羊的998扇门后,跑车在剩下门后的概率是9991000。这是你不改猜得到跑车的概率是11000,改猜得到跑车的概率是9991000。显然改猜才是最好的选择。解答二:不必改猜。理由是主持人打开一扇藏有山羊的门后,跑车在剩下两扇门后的可能性相等,所以改猜或者不改猜的概率都是12。对于上述两种解答,很多人认同解答一,但是似乎并没有充足的理由否定解答二,更有人将其称为悖论。但是无论如何,从两种解答来看改猜获得跑车的概率都不会低于12,所以改猜才是最好的选择。但是目前问题并没有水落石出,问题究竟出在哪里呢?2.2有关三门问题的一个著名论述1991年9月,自称是世界上最聪明的美国女人沙温特收到一封来信,信中提到了这样一个问题:假如你正在参加一项游戏节目,现在在你面前有三扇门。一扇门后面是丰厚的奖金——比如是跑车,另外两扇门后面则是安慰奖——比如不值钱的山羊。主持人会先让你从三扇门中任选一扇,在你打开那扇门之前,主持人会先打开另外一扇藏有山羊的门,现在再给你一次机会,坚持原本的选择还是更换到另外一扇门,这时你会怎么做?当沙特看到这个问题后,她认为应该更换选择到另外一扇门。随后她便把这个问题刊登在她的《行列》专栏上。令她意料之外的是,问题刊登之后竟然引起了轩然大波。读者的来信似雪花般飞来,来信者大多数都不认同沙温特的观点,他们认为坚持或者更改选择获得跑车的概率都是一样的。这些人中不乏有知名的数学家,其中有一位这样写到:“你别胡说八道了,让我来解释一下吧,在打开一扇藏有山羊的门后,这个信息使余下任何一个选择的概率都变为12,作
本文标题:三门问题研究
链接地址:https://www.777doc.com/doc-5471733 .html