您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三数学总复习知识点
初三数学知识点第一章二次根式1二次根式:形如a(0a)的式子为二次根式;性质:a(0a)是一个非负数;02aaa;02aaa。2二次根式的乘除:0,0baabba;0,0bababa。3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。4海伦-秦九韶公式:))()((cpbpppS,S是三角形的面积,p为2cbap。第二章一元二次方程1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。2一元二次方程的解法配方法:将方程的一边配成完全平方式,然后两边开方;公式法:aacbbx242因式分解法:左边是两个因式的乘积,右边为零。3一元二次方程在实际问题中的应用4韦达定理:设21,xx是方程02cbxax的两个根,那么有acxxabxx2121,第三章旋转1图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;3关于原点对称的点的坐标第四章圆1圆、圆心、半径、直径、圆弧、弦、半圆的定义2垂直于弦的直径圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。3弧、弦、圆心角在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。4圆周角在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。5点和圆的位置关系点在圆外rd点在圆上d=r点在圆内dr定理:不在同一条直线上的三个点确定一个圆。三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。6直线和圆的位置关系相交dr相切d=r相离dr切线的性质定理:圆的切线垂直于过切点的半径;切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。7圆和圆的位置关系外离dR+r外切d=R+r相交R-rdR+r内切d=R-r内含dR-r8正多边形和圆正多边形的中心:外接圆的圆心正多边形的半径:外接圆的半径正多边形的中心角:没边所对的圆心角正多边形的边心距:中心到一边的距离9弧长和扇形面积弧长180rnl扇形面积:3602rnS10圆锥的侧面积和全面积侧面积:全面积11(附加)相交弦定理、切割线定理第五章概率初步1概率意义:在大量重复试验中,事件A发生的频率nm稳定在某个常数p附近,则常数p叫做事件A的概率。2用列举法求概率一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=nm3用频率去估计概率下册第六章二次函数1二次函数cbxaxy2=abacabxa44222a0,开口向上;a0,开口向下;对称轴:abx2;顶点坐标:abacab44,22;图像的平移可以参照顶点的平移。2用函数观点看一元二次方程3二次函数与实际问题第七章相似1图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比值。2相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。第八章锐角三角函数1锐角三角函数:正弦、余弦、正切;2解直角三角形第九章投影和视图1投影:平行投影、中心投影、正投影2三视图:俯视图、主视图、左视图。3三视图的画法初三数学知识点一、《一元二次方程》1.一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3.一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:Δ>0=有两个不等的实根;Δ=0=有两个相等的实根;Δ<0=无实根;Δ≥0=有两个实根(等或不等).4.一元二次方程的根系关系:当ax2+bx+c=0(a≠0)时,如Δ≥0,有下列公式:.acxxabxx)2(a2ac4bbx)1(212122,1,;※5.当ax2+bx+c=0(a≠0)时,有以下等价命题:(以下等价关系要求会用公式acxxabxx2121,;Δ=b2-4ac分析,不要求背记)(1)两根互为相反数ab=0且Δ≥0b=0且Δ≥0;(2)两根互为倒数ac=1且Δ≥0a=c且Δ≥0;(3)只有一个零根ac=0且ab≠0c=0且b≠0;(4)有两个零根ac=0且ab=0c=0且b=0;(5)至少有一个零根ac=0c=0;(6)两根异号ac<0a、c异号;(7)两根异号,正根绝对值大于负根绝对值ac<0且ab>0a、c异号且a、b异号;(8)两根异号,负根绝对值大于正根绝对值ac<0且ab<0a、c异号且a、b同号;(9)有两个正根ac>0,ab>0且Δ≥0a、c同号,a、b异号且Δ≥0;(10)有两个负根ac>0,ab<0且Δ≥0a、c同号,a、b同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ<0时,二次三项式在实数范围内不能分解.ax2+bx+c=a(x-x1)(x-x2)或ax2+bx+c=a2ac4bbxa2ac4bbxa22.7.求一元二次方程的公式:x2-(x1+x2)x+x1x2=0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x):(1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10.二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)xx(xx4)xx()xx()xx(xx4)xx()xx(xx2)x1x(x1x2)x1x(x1xxx4)xx()xx(xx2)xx(xx)1(2121221221212122122121222222212212212122122214xx.22xx2xx.12xx)2(221212121)两边平方为(和分类为;.,)2(34xx34xx)1()916xx(34xx)3(2121222121因为增加次数两边平方一般不用和分类为或;.0x,0x:.1xxBsinAcos,1AcosAsin,90BABsinx,Asinx)4(2122212221注意隐含条件可推出由公式时且如.0x,0x:.x,x),,(,x,x)5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个二、《圆》几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1)∵∠AOB=∠COD∴AB=CD(2)∵AB=CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=21∠AOB∴……………(2)∵AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴AB是直径(4)∵CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ABCD是圆内接四边形∴∠CDE=∠ABC∠C+∠A=180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径ABCDOABCDEO平分优弧过圆心垂直于弦平分弦平分劣弧∴ACBCADBD==AE=BEABCDEFOABCOABCDEABCOABCD∵∴∥=ABCDACBDABCO是半径垂直是切线(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵PA、PB是切线∴PA=PB∵PO过圆心∴∠APO=∠BPO8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(如图)(3)弦切角的度数等于它所夹
本文标题:初三数学总复习知识点
链接地址:https://www.777doc.com/doc-5472264 .html