您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 北师大版初二上-一次函数讲义
第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.【例1-1】下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x的函数的是().A.①②③B.①②C.②③D.①②【例1-2】已知y=2x2+4,(1)求x取12和-12时的函数值;(2)求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式(解析式)左边只含一个变量y,右边是含x的代数式.【例2】已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围(1)使函数有意义的自变量的全体取值叫做自变量的取值范围.(2)自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.【例3】若等腰三角形的周长为50cm,底边长为xcm,一腰长为ycm,y与x的函数关系式为y=12(50-x),则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.(1)列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.(2)图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.(3)解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.【例4】你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是().5.怎样判定函数关系(1)从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x和y,对于x每一个确定的值,y都有且只有一个值与之对应,当x取不同的值时,y的值可以相等也可以不相等,但如果一个x的值对应着两个不同的y值,那么y一定不是x的函数.根据这一点,我们可以判定一个关系式是否表示函数.(2)从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x每一个确定的值,y是否都有唯一的值和它对应,也就是说x若取相同的值,y必须是相同的值.(3)从图象上判定函数根据函数的定义知道,每一个x值只能对应唯一的一个y值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.【例5-1】下列表格中能反映y是x的函数的是().Ax-1123-1y024810Bx01230y-22346Cx22222y-10113Dx-11234y024810【例5-2】下列表示y是x的函数图象的是().6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:(1)自变量的取值范围完全相同.(2)函数值的取值范围完全相同.(3)变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.【例6-1】下列函数中,与y=x表示同一个函数的是().A.y=x2B.y=|x|C.y=(x)2D.y=3x3【例6-2】下列各组函数中,哪些是同一函数:①yx与1yx;②1,yxx为实数,与1,yxx为自然数;③24yx与22yxx;④11yx与11ux;⑤2yxx与2yx;⑥2||yx与2,02,0xxyxx;7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.【例7】父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是().………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量).谈重点一次函数的条件函数是一次函数必须符合下列两个条件:(1)关于两个变量x,y的次数是1;(2)必须是关于两个变量的整式.【例1】下列函数中,是一次函数的是().A.y=7x2B.y=x-9C.y=6xD.y=1x+12.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx(k为常数,且k≠0)时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.【例2】下列函数中,是正比例函数的是().A.y=-2xB.y=-2x+1C.y=-2x2D.y=-2x辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx+b(k≠0)的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx(k≠0)的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.【例3】甲、乙两地相距30km,某人从甲地以每小时4km的速度走了th到达丙地,并继续向乙地走.(1)试分别确定甲、丙两地距离s1(km)及丙、乙两地距离s2(km)与时间t(h)之间的函数关系式.(2)它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.联系:①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.【例4-1】在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?(1)y=3x;(2)y=1x;(3)y=-3x+1;(4)y=x2.【例4-2】已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.【例5】一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9L,行驶了1h后发现已耗油1.5L.(1)求油箱中的剩余油量Q(L)与行驶的时间t(h)之间的函数关系式,并求出自变量t的取值范围;(2)如果摩托车以60km/h的速度匀速行驶,当油箱中的剩余油量为3L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系(1)函数图象上的任意点P(x,y)必满足该函数关系式.(2)满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.(3)判定点P(x,y)是否在函数图象上的方法是:将点P(x,y)的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.【例1】判断下列各点是否在函数y=2x-1的图象上.A(2,3),B(-2,-3).2.函数图象的画法画函数图象的一般步骤:(1)列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.(2)描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.(3)连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的“平滑曲线”,现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较“平”“滑”的线,实际上有时是直线.【例2】作出一次函数y=-2x-
本文标题:北师大版初二上-一次函数讲义
链接地址:https://www.777doc.com/doc-5482739 .html