您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 1初中数学最值系列之费马点教案
1第1讲最值系列之费马点皮耶德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.据说费马在提出“费马大定理”时,在笔记本上写道:我已经想到了一个绝妙的证明方法,但是这个地方不够写,我就不写了吧。看得出那个时候纸确实挺贵的,然后,直到1995年,才由英国数学家怀尔斯证明出,而距离费马逝世,已经过去了330年.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点.问题:在△ABC内找一点P,使得PA+PB+PC最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.阿哈哈哈,此处一个也用不上!其实理论还是上面的理论,本题难点在于有3条线段,我们需要对这三条线段作一些位置上的变化,如果能变换成在一条直线上,问题就能解决了!算了算了,不墨迹了,直接报答案了:若点P满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC值最小,P点称为该三角形的费马点.接下来讨论2个问题:(1)如何作三角形的费马点?(2)为什么是这个点?2一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.(点A到两边距离相等)有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC120°,若120BAC,这个图就不是这个图了,会长成这个样子:此时CD与BE交点P点还是我们的费马点吗?显然这时候就不是了,显然P点到A、B、C距离之和大于A点到A、B、C距离之和.所以咧?是的,你想得没错,此时三角形的费马点就是A点!当然这种情况不会考的,就不多说了.3二、为什么是这个点【例题1】为什么P点满足∠PAB=∠BPC=∠CPA=120°,PA+PB+PC值就会最小呢?归根结底,还是要重组这里3条线段:PA、PB、PC的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC≌△ABE,可得:CD=BE.类似的手拉手,在图4中有3组,可得:AF=BE=CD.巧的嘞,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的PA+PB+PC的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值!接下来才是真正的证明:考虑到∠APB=120°,∴∠APE=60°,则可以AP为边,在PE边取点Q使得PQ=AP,则△APQ是等边三角形.△APQ、△ACE均为等边三角形,且共顶点A,故△APC≌△AQE,PC=QE.以上两步分别转化PA=PQ,PC=QE,故PA+PB+PC=PB+PQ+QE=BE.4没有对比就没有差别,我们换个P点位置,如下右图,同样可以构造等边△APQ,同样有△APC≌△AQE,转化PA=PQ,PC=QE,显然,PA+PB+PC=PB+PQ+QEBE.【练习2】如图,在△ABC中,∠ABC=60°,AB=5,BC=3,P是△ABC内一点,求PA+PB+PC的最小值,并确定当PA+PB+PC取得最小值时,∠APC的度数__________.5【练习3】如图,矩形ABCD中,AB=32,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是________.【练习4】如图,在△ABC中,P为平面内一点,连结PA,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.【探究】求证:PM=PC,MD=PA【应用】若BC=a,AC=b,∠ACB=60°,则PA+PB+PC的最小值是(用a,b表示)【探究】由等边三角形的性质得出PM=PC,AC=CD,PC=CM,∠PCM=∠ACD=60°,得出∠PCA=∠MCD,证明△ACP≌△DCM,得出MD=PA;6【练习5】已知正方形ABCD内一动点E到A,B,C三点的距离之和的最小值为62求此正方形的边长.7、【练习6】已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。求证:GA+GB+GC最小8【练习7】如图,P是边长为1的等边△ABC内的任意一点,求t=PA+PB+PC的取值范围.910【练习8】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,易证△AMD≌△AGF,∴MD=GF∴ME+MA+MD=ME+EG+GF过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.11【练习9】已知三个村庄A,B,C构成了如图所示的△ABC(其中∠A,∠B,∠C均小于120°),现选取一点P作为打水井,使水井P到三个村庄A,B,C所铺设的输水管总长度最小.求输水管总长度的最小值_________.找一点P连接PA、PB、PC△PBC绕点B旋转60°12【练习10】如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,222BDBHDH即可得出结果.13【练习11】问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=42,点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG为边作等边△MGH,连接NH,则NH的值即为所求的点O到△MNG三个顶点的距离和的最小值.(此处不再证明)过点H作HQ⊥NM交NM延长线于Q点,根据∠NMG=75°,∠GMH=60°,可得∠HMQ=45°,∴△MHQ是等腰直角三角形,∴MQ=HQ=4,∴NH=2210016229NQHQ.
本文标题:1初中数学最值系列之费马点教案
链接地址:https://www.777doc.com/doc-5491275 .html