您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 综合/其它 > 低压配电网三相负荷分配不平衡的分析与解决措施
低压配电网三相负荷分配不平衡的分析与解决措施摘要:目前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。关键词:配电网、负荷、不平衡、分析、解决当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题,笔者从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些切实可行的解决措施.1三相负荷不平衡产生对电能质量的影响分析目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕组无中性线、二次绕组中性线接地,并接有零线。在二次低压供电方式中一般采取3相4线制供电。配变低压侧3相负荷不平衡直接体现在3相负荷电流的不对称,从电机学的原理来分析3相不对称电流可以分解为对称的正序、负序、零序电流,也可以简单的看成是对称的3相负荷加上单相负荷负荷的叠加。由于配电变压器的一次绕组没有中性线,所以在二次绕组侧产生的零序电流无法在一次绕组中平衡,零序电流在零序电阻上产生电压降直接导致了在配变二次侧产生了中性点位置偏移。同样根据简单的电路原理也可以分析出,由于在A、B、C相的负荷不等,所以在A、B、C三相上的电流也就不等,那么A、B、C三相电流矢量和一般不等于0,也就是在中性线上的电流一般不等于0,也即零线电流一般不等于0,在实际情况下,零线的电阻是不等于0的,这样在零线上就存在电压,形成了中性点位移,导致了A、B、C相的相电压不对称,当某一相上接的负荷越大,这一相上的电压也就越低,而另外两相的电压将变高,所以当三相负荷的差值越大,也就是三相负荷的电流不平衡度越大,那么中性点的位移也就越大,所以导致电压的偏差也就越大。在城区配网中大多数低压负荷为照明和家用电器,这些都是单相负荷,同时用户的单相负荷的启用时间又不同时,所以三相电流的不平衡将会很明显,导致了某些用户的电压偏低,有些用户的电压偏高,特别是在夏天用电高峰期间,我们发现在有些配变的某一相上接了多台空调,在同时启动是就会产生单相电流严重超过其他两相,导致该相上的电压偏低,使有些用户的电器无法启动。这就是3相负荷不平衡导致3相电流、电压出现不对称的产生的原因。2三相负荷不平衡对线损的影响分析:2.1三相负荷不平衡造成低压线路电能损耗增大。低压配电线(故障(电缆/电线/测试/检测/定位/故障点))路有三相四线制、三相三线制、单相二线制等供电形式,线路交错繁杂,各相电流不平衡,沿线负荷分布没有一定规律,并且缺乏完整的线路参数和负荷资料,所以要准确地计算线路损耗是比较困难的,目前利用电流或者电压的不平衡度结合电流电压的向量计算在实际情况下比较复杂同时在实际应用中也不太切实可行,笔者在本文中利用一种简单近似的方法推导出因为的对低压配网的损耗影响,以目前低压配网常见的三相四线制的接线方式分析,设定3相负荷平衡下3相负荷为3P负载=PAPBPC=3P(PA=PB=PC=P),此时的线路损耗为设定P损耗=IA2RIB2RIC2R=3IA2RA=3P2/U2(IA=IB=IC=I,RA=RB=RC=R),假设三相负荷出现最严重偏相的情况下,即出现二相缺相运行,假设所有负荷接在C相的情况上运行,同时认为每个电气节点的电压相等,P损耗,=IC,2*R=(3P/U)2*R=9P2/U2*R=9P可以推出当出现负荷最严重偏相时,低压线路的损耗增加了6倍。目前由于低压电网的3相负荷分布不均的现象比较普遍,负荷分配的实时变化很大,所以如果引入实际情况下的电流、电压的矢量值计算非常烦琐,而且意义不大,笔者在这里引入一种平均不平衡度的计算,在正常的误差范围内,可以说明负荷分配的不平衡对电网低压线路的损耗变化的影响,设定三相负荷为PA、PB、PC,三相的平均负荷为Pav为(PAPBPC)/3,假定各相功率因数相同,每个电气节点的电压相等,三相的负荷的平均不平衡度对应为△A、△B、△C,(△A=(PA-Pav)/Pav的差值)相线的功率损耗为:P损耗=IA2*RIB2*RIC2*R=[Pav(1△A)/U]2*R[Pav(1△B)/U]2*R[Pav(1△A)/U]2*R=(U/R)2*Pav2[(1△A)2(1△B)2(1△A)2]=(Pav*U/R)2*[(1△A)2(1△B)2(1△C)2]因为△A△B△C=0,所以P损耗=(Pav*U/R)2*[3△A2△B2△C2],对此我们可以通过负荷实际测量出A、B、C的实际负荷数值推出配变台区的相线低压损耗。此外,在三相系统中每个相线对星形接法的中点电压间有120°的相位移动,故当每相的负荷相等时,在零线上的电流为零。当三相负荷不均衡时,零线电流等于3相不平衡电流的矢量和,在抵消基波电流后的不平衡电流流入零线,由于谐波的影响,零线电流可以达到相线电流的1.5倍。此零线电流在零线回路造成的损耗在低压线路损耗中也占有一定的比例。2.2三相负荷不平衡造成配变自身电能损耗增大。配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。综上所述,,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。3解决3相负荷不平衡的几点措施3.1重视低压配电网的规划工作,加强与地方政府规划等部门的工作沟通,避免配电网建设无序,尤其避免在低压配电网中出现头痛医头,脚痛医脚的局面,在配电网建设和改造当中对低压台区进行合理的分区分片供电,配变布点尽量接近负荷中心,避免扇型供电和迂回供电,配电网络的建设要遵循“小容量、多布点、短半径”的配变选址原则。3.2在对采用低压三相四线制供电的地区,要积极争取对有条件的配电台区采用3芯或者4芯电缆或者用低压集束导线供电至用户端,这样可以在低压线路施工中最大程度的避免三相负荷出现偏相的出现,同时要做好低压装表工作,单相电表在A、B、C三相的分布尽量均匀,避免出现单相电只挂接在一相或者两相上,在线路末端造成负荷偏相。3.3在低压配电网零线采用多点接地,降低零线电能损耗。目前由于三相负荷的分布不平衡,导致了零线出现电流,按照规程要求零线电流不得超过相线电流的25%,在实际运行当中,由于零线导线截面较细,电阻值较相同长度的相线大,零线电流过大在导线上也会造成一定比例的电能损耗,所以建议在低压配电网公用主零线采用多点接地,降低零线电能损耗,避免因为负荷不平衡出现的零线电流产生的电压严重危及人身安全,而且通过多点接地,减低了因为发热等原因造成的零线断股断线,使得用户使用的相电压升高,损坏家用电器。此外对于零线损耗问题,在目前一般低压电缆中,零线的截面为相线的1/2,电阻值大造成了在三相负荷不平衡时,零线损耗加大,为此可以考虑到适当增大零线的导线截面,例如采用五芯电缆,每相用一个芯线而零线则用两个芯线。3.4对单相负荷占较大比重的供电地区积极推广单相变供电。目前在城市(照明)居民小区内大部分的负载电器是采用单相电,由于线路负荷大多为动力、照明混载,而电气设备使用的同时率较低,这样使得低压三相负荷在实际运行中的不平衡的幅度更大。另外从目前农村的生活用电情况看,在很多欠发达和不发达地区的农村存在着人均用电量小,居住分散,供电线(故障(电缆/电线/测试/检测/定位/故障点))路长等问题,对这些地区可以考虑到对于用户较分散、用电负荷主要以照明为主、负荷不大的情况,采用采用单相变压器供电的方式,以达减少损耗和建设资金的目的。目前单相变压器损耗比同容量三相变压器减少15%~20%,有的厂家生产的单相变在低压侧可以引出380V和220V两种电压等级,同时在一些地区也已开展利用多台单相变向三相负荷供电的试点,为使用单相变供电提供了更加广阔的空间。3.5积极开展变压器负荷实际测量和调整工作。配变的负荷实测工作看似简单,但是在实际工作中有几点需要注意,一是实测工作不能简单地测量配变低压侧A、B、C三相引出线的相电流,而且要测量零线上的电流,或者是测量零线(排)对地电压,从而可以更好地比较出三相负荷的不平衡情况,二是实测工作要向低压配电线(故障(电缆/电线/测试/检测/定位/故障点))路的末端和分支端延伸,这样可以进一步发现不平衡负荷的出现地点,确定调荷点,三是负荷实测工作既要定期开展也要不定期开展,尤其是在大的用户负荷投运和在高峰负荷期间,要增加实测的次数,通过及时的测量配变低压出线和接近用户端的低压线路电流,便于准确地了解设备的运行情况,做好负荷的均衡合理分配。
本文标题:低压配电网三相负荷分配不平衡的分析与解决措施
链接地址:https://www.777doc.com/doc-5492560 .html