您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 房地产 > 化原实验精馏实验报告
北京化工大学学生实验报告学院:化学工程学院姓名:学号:专业:化学工程与工艺班级:同组人员:课程名称:化工原理实验实验名称:精馏实验实验日期北京化工大学1实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。关键词:精馏,图解法,理论板数,全塔效率,单板效率。一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。②了解板式塔的结构,观察塔板上汽-液接触状况。③测定全回流时的全塔效率及单塔效率。④测定部分回流时的全塔效率。⑤测定全塔的浓度(或温度)分布。⑥测定塔釜再沸器的沸腾给热系数。二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。2(1)总板效率EE=N/Ne式中E——总板效率;N——理论板数(不包括塔釜);Ne——实际板数。(2)单板效率EmlEml=(xn-1-xn)/(xn-1-xn*)式中Eml——以液相浓度表示的单板效率;xn,xn-1——第n块板和第n-1块板的液相浓度;xn*——与第n块板气相浓度相平衡的液相浓度。总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因数。当物系与板型确定后,可通过改变气液负荷达到最高板效率;对于不同的板型,可以保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。若改变塔釜再沸器中加热器的电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。由牛顿冷却定律,可知Q=αA△tm式中Q——加热量,kw;α——沸腾给热系数,kw/(m2*K);A——传热面积,m2;△tm——加热器表面与主体温度之差,℃。若加热器的壁面温度为ts,塔釜内液体的主体温度为tw,则上式可改写为Q=aA(ts-tw)由于塔釜再沸器为直接电加热,则加热量Q为Q=U2/R式中U——电加热的加热电压,V;R——电加热器的电阻,Ω。3三、装置和流程本实验的流程如图1所示,主要有精馏塔、回流分配装置及测控系统组成。1.精馏塔精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径∮(57×3.5)mm,塔板间距80mm;溢流管截面积78.5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察踏板上的汽-液接触情况,塔身设有一节玻璃视盅,在第1-6块塔板上均有液相取样口。蒸馏釜尺寸为∮108mm×4mm×400mm.塔釜装有液位计、电加热器(1.5kw)、控温电热器(200w)、温度计接口、测压口和取样口,分别用于观测釜内液面高度,加热料液,控制电加热装置,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。由于本实验所取试样为塔釜液相物料,故塔釜内可视为一块理论板。塔顶冷凝器为一蛇管式换热器,换热面积为0.06m2,管外走冷却液。图1精馏装置和流程示意图1.塔顶冷凝器2.塔身3.视盅4.塔釜5.控温棒6.支座7.加热棒8.塔釜液冷却器9.转子流量计10.回流分配器11.原料液罐12.原料泵13.缓冲罐14.加料口15.液位计42.回流分配装置回流分配装置由回流分配器与控制器组成。控制器由控制仪表和电磁线圈构成。回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。两个出口管分别用于回流和采出。引流棒为一根∮4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。即当控制器电路接通后,电磁圈将引流棒吸起,操作处于采出状态;当控制器电路断开时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。此回流分配器可通过控制器实现手动控制,也可通过计算机实现自动控制。3.测控系统在本实验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验跟更为简便、快捷,又可实现计算机在线数据采集与控制。4.物料浓度分析本实验所用的体系为乙醇-正丙醇,由于这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,故可通过阿贝折光仪分析料液的折射率,从而得到浓度。这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。混合料液的折射率与质量分数(以乙醇计)的关系如下。=58.9149—42.5532Dn式中——料液的质量分数;Dn——料液的折射率(以上数据为由实验测得)。四、操作要点①对照流程图,先熟悉精馏过程中的流程,并搞清仪表上的按钮与各仪表相对应的设备与测控点。②全回流操作时,在原料贮罐中配置乙醇含量20%~25%(摩尔分数)左右的乙醇-正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。③启动塔釜加热及塔身伴热,观察塔釜、塔身t、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的水控制阀。5④测定全回流情况下的单板效率及全塔效率,在一定的回流量下,全回流一段时间,待该塔操作参数稳定后,即可在塔顶、塔釜及相邻两块塔板上取样,用阿贝折光仪进行分析,测取数据(重复2~3次),并记录各操作参数。⑤实验完毕后,停止加料,关闭塔釜加热及塔身伴热,待一段时间后(视镜内无料液时),切断塔顶冷凝器及釜液冷却器的供水,切断电源,清理现场。五、报告要求①在直角坐标系中绘制x-y图,用图解法求出理论板数。②求出全塔效率和单板效率。③结合精馏操作对实验结果进行分析。六、数据处理(1)原始数据操作系数:加热电压104.5V;塔釜温度87.0℃;塔顶温度78.6℃;全塔压降1.33kPa。实验数据:①塔顶:1Dn=1.3632,2Dn=1.3631;塔釜:1Dn=1.3744,2Dn=1.3742。②第四块板:1Dn=1.3655,2Dn=1.3654;第五块板:1Dn=1.3644,2Dn=1.3666。(2)数据处理①由附录查得101.325kPa下乙醇-正丙醇t-x-y关系:表1:乙醇—正丙醇平衡数据(p=101.325kPa)序号液相组成x气相组成y沸点/℃10097.1620.1260.24093.8530.1880.31892.6640.2100.33991.650.3580.55088.3260.4610.65086.2570.5460.71184.9880.6000.76084.1390.6630.79983.06100.8440.91480.59111.01.078.38乙醇沸点:78.38℃,丙醇沸点:97.16℃。6②原始数据处理:表2:原始数据处理名称折光率1Dn折光率2Dn平均折光率Dn质量分数摩尔分率x塔顶1.36321.36311.36320.90850.9283塔釜1.37441.37421.37430.43400.5001第4块板1.36551.36541.36550.81060.8481第5块板1.36641.36661.36650.76600.8102数据计算以塔顶为例:nD=nD1+nD22=1.3632+1.36312=1.3632ω=58.9149−42.5532nD=58.9149−42.5532×1.3632=0.9085x=ωω乙醇ωω乙醇+1−ωω正丙醇=0.9085460.908546+1−0.908560=0.9283③在直角坐标系中绘制x-y图,用图解法求出理论板数。参见乙醇-丙醇平衡数据作出乙醇-正丙醇平衡线,全回流条件下操作线方程为y=x,具体作图如下所示(塔顶组成xD=0.9283,塔釜组成xW=0.5001):图2:乙醇—正丙醇平衡线与操作线图00.20.40.60.8100.20.40.60.81平衡线操作线0.9280.5001yx7④求出全塔效率和单板效率。由图解法可知,理论塔板数为4.8块(包含塔釜),故全塔效率为EE=NNε×100%=4.88×100%=60.0%使用matlab拟合乙醇—正丙醇平衡数据,得到平衡线拟合方程如下:320.54381.52911.98440.0007yxxx;拟合图线如下:图3:乙醇—正丙醇气液相平衡数据拟合图第5块板的气相浓度为y5=x4=0.8481,则此时,x5∗=0.7335则第5块板单板效率Eml,5=0.8481−0.81020.8481−0.7335×100%=33.1%七、误差分析及结果讨论1.误差分析:(1)实验过程误差:实验过程中操作条件是在不断变化的,无法达到完全稳定状态,启动实验装置1小时后,加热电压波动范围为±0.3,全塔压降波动范围为±0.02,塔顶及塔釜温度波动范围为±0.01,每次取料后会引起短时间的数据起伏;使用阿贝折光仪读数时存在误差。(2)数据处理误差:使用作图法求取理论塔板数存在一定程度的误差,从而求取的全塔效率不够精确。82.结果讨论:①全塔效率:对于一个特定的物系和塔板结构,由于塔的上下部气液两相的组成、温度不同,所以物性也不同,又由于塔板的阻力,使塔的上下部分的操作压强也不同,这些因素使每个塔板的效率不同.所以我们需要用一种全面的效率来衡量整个塔的分离效果的高低.公式E=N/Ne就是一种综合的计算方法.全塔效率反映了全塔各塔板的平均分离效果,它不单与影响点效率、板效率的各种因素有关,而且把板效率随组成等的变化也包括在内.所有的这些因素E的关系难以搞清,所以我们只能用实验来测定,本次实验中测得:E=0.60。由于实验存在误差,我们只是大致的对实验用塔进行粗略的评价,经过实验我们分析了影响塔板效率的一些因素,归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构的因素相当复杂,以及塔的操作条件等。②单板效率:单板效率是评价塔板性能优劣的重要数据.物系的性质、板型及操作负荷是影响单板效率的重要因素.当物系板型确定后,可通过改变气液的负荷达到最高的板效率;对于不同的板型可以在保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。我们这里应用默弗里板效率公式计算得E5=0.331。从结果来看,本实验全塔效率较好,而单板效率偏低,说明本塔的塔板性能不够好。八、思考题①什么是全回流?全回流操作有哪些特点,在生产中有什么实际意义?如何测定全回流条件下的气液负荷?答:全回流是精馏塔中气相组分完全用于回流到精馏塔中,而无进料和出料的操作状态。全回流在精馏塔的停开车和塔板效率的测定以及理论研究中使用。要测定全回流条件下的气液负荷,可由2UQqrR(其中Q为塔釜加热器加热量,U为加热电压,R为加热器电阻,q为汽化量,r为塔釜混合液的相变焓)计算出塔釜汽化量V=q。而在全回流状态下,液量L=气量V=q。9②塔釜加热对精馏操作的参数有什么影响?塔釜加热量主要消耗在何处?与回流量有无关系?答:塔釜加热对使塔
本文标题:化原实验精馏实验报告
链接地址:https://www.777doc.com/doc-5494897 .html