您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > Quick introduction to tensor analysis
arXiv:math/0403252v1[math.HO]16Mar20042MSC97U20PACS01.30.PpR.A.Sharipov.QuickIntroductiontoTensorAnalysis:lecturenotes.Freelydistributedon-line.Isfreeforindividualuseandeducationalpurposes.Anycommercialusewithoutwrittenconsentfromtheauthorisprohibited.ThisbookwaswrittenaslecturenotesforclassesthatItaughttoundergraduatestudentsmajoringinphysicsinFebruary2004duringmytimeasaguestinstructoratTheUniversityofAkron,whichwassupportedbyDr.SergeiF.Lyuksyutov’sgrantfromtheNationalResearchCouncilundertheCOBASEprogram.These4classeshavebeentaughtintheframeofaregularElectromagnetismcourseasanintroductiontotensorialmethods.Iwrotethisbookina”do-it-yourself”stylesothatIgiveonlyadraftoftensortheory,whichincludesformulatingdefinitionsandtheoremsandgivingbasicideasandformulas.Allotherworksuchasprovingconsistenceofdefinitions,derivingformulas,provingtheoremsorcompletingdetailstoproofsislefttothereaderintheformofnumerousexercises.Ihopethatthisstylemakeslearningthesubjectreallyquickandmoreeffectiveforunderstandingandmemorizing.IamgratefultoDepartmentChairProf.RobertR.MallikfortheopportunitytoteachclassesandthustobeinvolvedfullyintheatmosphereofanAmericanuniversity.IamalsogratefultoMr.M.Boiwka(mboiwka@hotmail.com)Mr.A.Calabrese(ajc10@uakron.edu)Mr.J.Comer(funnybef@lycos.com)Mr.A.Mozinski(arm5@uakron.edu)Mr.M.J.Shepard(sheppp2000@yahoo.com)forattendingmyclassesandreadingthemanuscriptofthisbook.IwouldliketoespeciallyacknowledgeandthankMr.JeffComerforcorrectingthegrammarandwordinginit.Contactstoauthor.Office:MathematicsDepartment,BashkirStateUniversity,32Frunzestreet,450074Ufa,RussiaPhone:7-(3472)-23-67-18Fax:7-(3472)-23-67-74Home:5Rabochayastreet,450003Ufa,RussiaPhone:7-(917)-75-55-786E-mails:RSharipov@ic.bashedu.ru,r-sharipov@mail.ru,rasharipov@hotmail.com,URL:§1.Geometricalandphysicalvectors............................................................4.§2.Boundvectorsandfreevectors...............................................................5.§3.Euclideanspace.....................................................................................8.§4.BasesandCartesiancoordinates............................................................8.§5.Whatifweneedtochangeabasis?......................................................12.§6.Whathappenstovectorswhenwechangethebasis?............................15.§7.Whatisthenoveltyaboutvectorsthatwelearnedknowingtransformationformulafortheircoordinates?.......................................17.CHAPTERII.TENSORSINCARTESIANCOORDINATES......................18.§8.Covectors............................................................................................18.§9.Scalarproductofvectorandcovector...................................................19.§10.Linearoperators................................................................................20.§11.Bilinearandquadraticforms..............................................................23.§12.Generaldefinitionoftensors...............................................................25.§13.Dotproductandmetrictensor...........................................................26.§14.Multiplicationbynumbersandaddition..............................................27.§15.Tensorproduct..................................................................................28.§16.Contraction.......................................................................................28.§17.Raisingandloweringindices...............................................................29.§18.Somespecialtensorsandsomeusefulformulas....................................29.CHAPTERIII.TENSORFIELDS.DIFFERENTIATIONOFTENSORS....31.§19.TensorfieldsinCartesiancoordinates.................................................31.§20.ChangeofCartesiancoordinatesystem...............................................32.§21.Differentiationoftensorfields.............................................................34.§22.Gradient,divergency,androtor.Laplaceandd’Alambertoperators......35.CHAPTERIV.TENSORFIELDSINCURVILINEARCOORDINATES......38.§23.Generalideaofcurvilinearcoordinates................................................38.§24.AuxiliaryCartesiancoordinatesystem................................................38.§25.Coordinatelinesandthecoordinategrid.............................................39.§26.Movingframeofcurvilinearcoordinates..............................................41.§27.Dynamicsofmovingframe.................................................................42.§28.FormulaforChristoffelsymbols..........................................................42.§29.Tensorfieldsincurvilinearcoordinates................................................43.§30.Differentiationoftensorfieldsincurvilinearcoordinates.......................44.§31.Concordanceofmetricandconnec
本文标题:Quick introduction to tensor analysis
链接地址:https://www.777doc.com/doc-5514352 .html