您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 人教版高中数学必修2第一章_空间几何体练习题及答案(全)
1第一章空间几何体1.1空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A三棱柱四棱台球圆锥B三棱柱四棱台正方体圆台C三棱柱四棱台正方体六棱锥D圆锥圆台球半球2、下列说法正确的是()A有一个面是多边形,其余各面是三角形的多面体是棱锥B有两个面互相平行,其余各面均为梯形的多面体是棱台C有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A三棱锥B三棱柱C四棱柱D五棱锥4、下列说法错误的是()A一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B一个圆台可以由两个圆台拼合而成C一个圆锥可以由两个圆锥拼合而成D一个四棱台可以由两个四棱台拼合而成25、下面多面体中有12条棱的是()A四棱柱B四棱锥C五棱锥D五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A1个B2个C3个D4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。则“祝”“你”“前”分别表示正方体的—————祝你前程似锦3三、解答题:11、长方体ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1,由A到C1在长方体表面上的最短距离为多少?AA1B1BCC1D1D412、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图5一、选择题1、两条相交直线的平行投影是()A两条相交直线B一条直线C一条折线D两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是()①长方体②圆锥③三棱锥④圆柱A②①③B①②③C③②④D④③②正视图侧视图俯视图正视图侧视图俯视图正视图侧视图俯视图甲乙丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是()A长方体或圆柱B正方体或圆柱C长方体或圆台D正方体或四棱锥4、下列说法正确的是()。6A水平放置的正方形的直观图可能是梯形B两条相交直线的直观图可能是平行直线C平行四边形的直观图仍然是平行四边形D互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A21倍B42倍C2倍D2倍6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是()(1)二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。8、三视图和用斜二测画法画出的直观图都是在——————————————投影下画出来的。9、有下列结论:①角的水平放置的直观图一定是角②相等的角在直ABCD7观图中仍然相等③相等的线段在直观图中仍然相等④若两条线段平行,则在直观图中对应的两条线段仍然平行其中正确的是——————————————10、①如果一个几何体的三视图是完全相同的,则这个几何体一定是正方体。②如果一个几何体的正视图和俯视图都是矩形,则这个几何体一定长方体。③如果一个几何体的三视图都是矩形,则这个几何体是长方体④如果一个几何体的正视图和俯视图都是等腰梯形,则这个几何体一定圆台。其中说法正确的是—————————三、解答题11、根据图中物体的三视图,画出物体的形状正视图侧视图俯视图812、室内有一面积为3平方米的玻璃窗,一个人站在离窗子4米的地方向外看,他能看到窗前面一幢楼的面积有多大?(楼间距为20米)91.3空间几何体的表面积和体积(1)一、选择题1、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A221B441C21D2412、已知圆锥的母线长为8,底面圆周长为6,则它的体积是()A559B955C553D5533、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是()A2B2.5C5D10104、若圆锥的侧面展开图是圆心角为1200,半径为l的扇形,则这个圆锥的表面积与侧面积的比是()A3:2B2:1C4:3D5:35、如图,在棱长为4的正方体ABCD-A1B1C1D1中,P是A1B1上一点,且PB1=41A1B1,则多面体P-BCC1B1的体积为()A38B316C4D166、两个平行于圆锥底面的平面将圆锥的高分成相等的三部分,则圆锥被分成的三部分的体积的比是()A1:2:3B1:7:19C3:4:5D1:9:27二、填空题7、一个棱长为4的正方体,若在它的各个面的中心位置上,各打一个直径为2,深为1的圆柱形的孔,则打孔后几何体的表面积为——————————————CABDPA1B1C1D1118、半径为15cm,圆心角为2160的扇形围成圆锥的侧面,则圆锥的高是———————————9、在三棱锥A-BCD中,P、Q分别在棱AC、BD上,连接AQ、CQ、BP、PQ,若三棱锥A-BPQ、B-CPQ、C-DPQ的体积分别为6、2、8,则三棱锥A-BCD的体积为————10、棱长为a,各面均为等边三角形的四面体(正四面体)的表面积为——————————体积为—————————三、解答题11、直角梯形的一个底角为450,下底长为上底长的1.5倍,这个梯形绕下底所在的直线旋转一周所成的旋转体的表面积是,)25(求这个旋转体的体积。1212、如图,一个三棱锥,底面ABC为正三角形,侧棱SA=SB=SC=1,030ASB,M、N分别为棱SB和SC上的点,求AMN的周长的最小值。MCABSN131.4空间几何体的表面积和体积(2)一、选择题1、若三球的表面积之比为1:2:3,则其体积之比为()A3:2:1B3:2:1C32:22:1D7:4:12、已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是()A220B225C50D2003、木星的体积约是地球体积的30240倍,则它的表面积约是地60球表面积的()A60倍B3060倍C120倍D30120倍4、一个四面体的所有棱长为2,四个顶点在同一球面上,则此球14的表面积为()A3B4C33D65、等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积的大小关系是()A正方体S球S圆柱SB球S圆柱S正方体SC圆柱S球S正方体SD球S正方体S圆柱S6、半球内有一内接正方体,,则这个半球的表面积与正方体的表面积的比为()A65B125C2D以上答案都不对二、填空题7、正方体表面积为2a,它的顶点都在球面上,则这个球的表面积是————————————8、半径为R的球放置于倒置的等边圆锥(过轴的截面为正三角形)容器中,再将水注入容器内到水与球面相切为止,则取出球后水面的高度是——————————————9、把一个直径为40cm的大铁球熔化后做成直径是8cm的小球,共可做——————————个(不计损耗)。10、三个球的半径之比为1:2:3,则最大的球表面积是其余两个球的表面积的——————————倍。三、解答题1511、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋化了,会溢出杯子吗?(半球半径等于圆锥底面半径)cm4cm121612、有三个球和一个边长为1的正方体,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比。171.5空间几何体综合检测一、选择题1、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A一个圆台,两个圆锥B两个圆台、一个圆柱C两个圆台、一个圆柱D一个圆柱、两个圆锥2、中心角为1350,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A:B等于()A11:8B3:8C8:4D13:83、设正方体的表面积为24,一个球内切于该正方体,则这个球的体积为()A6B332C38D344、若干毫升水倒入底面半径为cm2的圆柱形器皿中,量得水面高度为cm6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,且恰好装满,则水面高度是()Acm36Bcm6Ccm3182Dcm31235、64个直径都为4a的球,记它们的体积之和为甲V,表面积之和为甲S,一个直径为a的球,记其体积为乙V,表面积为乙S,则()A甲V乙V,且甲S乙SB甲V乙V,且甲S乙SC甲V=乙V,且甲S乙SD甲V=乙V,且甲S=乙S186、已知正方体外接球的体积是332,则正方体的棱长为()A22B332C324D334二、填空题7、下列有关棱柱的说法:①棱柱的所有的面都是平的②棱柱的所有棱长都相等③棱柱的所有的侧面都是长方形或正方形④棱柱的侧面的个数与底面的边数相等⑤棱柱的上、下底面形状、大小相等,正确的有——————————8、已知棱台两底面面积分别为802cm和2452cm,截得这个棱台的棱锥高度为35cm,则棱台的体积是————————9、一个横放的圆柱形水桶,桶内的水占底面周长的41,则当水桶直立时,水的高度与桶的高度的比为——————10、一个圆台上底半径为5cm,下底半径为10cm,母线AB长为20cm,其中A在上底面上,B在下底面上,从AB中点M拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短长为————————三、解答题11、一个三棱柱的三视图如图所示,试求此三棱柱的表面积和体积。3221912、如图,在长方体ABCD-A1B1C1D1中,用截面截下一个棱锥C-A1DD1,求棱锥C-A1DD1的体积与剩余部分的体积比。ABCDA11B11C11D1120第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的关系(1)一、选择题1、下列有关平面的说法正确的是()A一个平面长是10cm,宽是5cmB一个平面厚为1厘米C平面是无限延展的21D一个平面一定是平行四边形2、已知点A和直线a及平面,则:①AaaA,②AaaA,③AaaA,④AaaA,其中说法正确的个数是()A0B1C2D33、下列图形不一定是平面图形的是()A三角形B四边形C圆D梯形4、三个平面将空间可分为互不相通的几部分()A4、6、7B3、4、6、7C4、6、7、8D4、6、85、共点的三条直线可确定几个平面()A1B2C3D1或36、正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、1B1C1的中点,则,正方体的过P、Q、R的截面图形是()A三角形B四边形C五边形D六边形二、填空题7、三个平面两两相交,交线的条数可能有————————————————AQB1RCBDPA1C1D1228、不共线的四点可以确定——————————————————个平面。9、正方体各面所在平面将空间分成——————————————部分。10、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有———————————三、解答题11、用符号语言描述图中所示内容,并画出平面ABC和平面及的交线。BACl2312、已知ABC在平面外,它的三边所在直线分别交平面于点P、Q、R,求证:P、Q、R三点共线。BACPQR242.2空间点、直线、平面之间的关系(2)一、选择题:1、空间两条互相平行的直线指的是()A在空间没有公共点的两条直线B分别在两个平面内的两条直线C分别在两个不同的平面内且没有公共点的两条直线D在同一平面内且没有公共点的两条直线2、分别和两条异面直线都相交的两条直线一定是()A异面直线B相交直线C不平行直线D不
本文标题:人教版高中数学必修2第一章_空间几何体练习题及答案(全)
链接地址:https://www.777doc.com/doc-5514858 .html