您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 函数的单调性与导数(上课1)
(4).对数函数的导数:(1)(ln)x(2)(log)ax(5).指数函数的导数:(1)()xe(2)()(0,1).xaaa1(sin)x()(3).三角函数:2(cos)x()(1).常函数:(C)/,(c为常数);(2).幂函数:(xn)/一、复习回顾:基本初等函数的导数公式导数的运算法则:法则1:()()fxgx法则2:()()fxgx法则3:()(()0)()fxgxgx判断函数单调性有哪些方法?比如:判断函数的单调性。yx233?yxxxyo2yx函数在上为____函数,在上为____函数。图象法定义法(,0)减(0,)增如图:单调性导数的正负函数及图象(,0)在上递减(0,)在上递增xyoyfx()abxyoyfx()ab切线斜率的正负kxyo2()fxxk0k0k0k0++--递增递减ab(,)在某个区间内,fx'()0fxab()(,)在内单调递增fx'()0fxab()(,)在内单调递减注意:应正确理解“某个区间”的含义,它必是定义域内的某个区间。1.应用导数求函数的单调区间(选填:“增”,“减”,“既不是增函数,也不是减函数”)(1)函数y=x-3在[-3,5]上为__________函数。(2)函数y=x2-3x在[2,+∞)上为_____函数,在(-∞,1]上为______函数,在[1,2]上为____________________________________函数。基础训练:增增减既不是增函数,也不是减函数求函数的单调区间。变1:求函数的单调区间。3233yxx233yxx理解训练:'63yx解:11'0,'022yxyx令得令得233yxx1(,)2的单调递增区间为单调递减区间为1(,)2解:2'963(32)yxxxx2'003yxx令得或2'003yx令得3233yxx的单调递增区间为单调递减区间为2(0,)32(,0),(,)3变3:求函数的单调区间。1yx变2:求函数的单调区间。33xyex巩固提高:'01xye令得解:'33xye33(0,)xyex的单调递增区间为(,0)单调递减区间为0'010xeyex令得0x0e解:21'0,yx0,x但1(,0)(0,)yx的单调递减区间为,总结:当遇到三次或三次以上的,或图象很难画出的函数求单调性问题时,应考虑导数法。①求定义域②求'()fx③令'()0()'()0()fxfxfxfx解不等式的递增区间解不等式的递减区间④作出结论1°什么情况下,用“导数法”求函数单调性、单调区间较简便?2°试总结用“导数法”求单调区间的步骤?已知导函数的下列信息:23'()0;32'()0;32'()0.xfxxxfxxxfx当时,当或时,当或时,试画出函数图象的大致形状。()fx分析:()fx在此区间递减()fx在此区间递增()fxx图象在此两处附近几乎没有升降变化,切线平行轴ABxyo23()yfx2.应用导数信息确定函数大致图象ABxyo23()yfx已知导函数的下列信息:23'()0;32'()0;32'()0.xfxxxfxxxfx当时,当或时,当或时,试画出函数图象的大致形状。()fx分析:()fx在此区间递减()fx在此区间递增()fxx图象在此两处附近几乎没有升降变化,切线平行轴ABxyo23()yfx2.应用导数信息确定函数大致图象解:的大致形状如右图:()fxxyo12()yfxxyo12()yfxxyo12()yfxxyo12()yfxxyo'()yfx2(A)(B)(C)(D)C(04浙江理工类)设是函数的导函数,的图象如右图所示,则的图象最有可能的是()()fx'()fx'()yfx()yfx通过这堂课的研究,你明确了,你的收获与感受是,你存在的疑惑之处有。(课本)322(),,,30()()()()()fxxaxbxcabcabfxRABCD函数其中为常数,当时,在上()增函数减函数常数既不是增函数也不是减函数A函数y=f(x)在给定区间G上,当x1、x2∈G且x1<x2时1)都有f(x1)<f(x2),则f(x)在G上是增函数;2)都有f(x1)>f(x2),则f(x)在G上是减函数;例3如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(A)(B)(C)(D)htOhtOhtOhtO一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.如图,函数在或内的图象“陡峭”,在或内的图象平缓.)(xfy),0(b)0,(a),(b),(a练习2.函数的图象如图所示,试画出导函数图象的大致形状)(xfy)(xf
本文标题:函数的单调性与导数(上课1)
链接地址:https://www.777doc.com/doc-5525289 .html