您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 中考数学试卷分类汇编:解直角三角形
解直角三角形一.选择题1.(2013·聊城,9,3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12B.4米C.5米D.6米考点:解直角三角形的应用-坡度坡角问题.分析:根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.解答:解:Rt△ABC中,BC=6米,=1:,∴则AC=BC×=6,∴AB===12.点评:此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.2(2013山西,10,2分)如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则BC两地之间的距离为()A.1003mB.502mC.503mD.10033m【答案】A【解析】依题得:AC=100,∠ABC=30°,tan30°=ACBC,BC=100100333,选A。3.如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角的正切值是43,则sin的值是【】A.45B.54C.35D.534.(2013四川绵阳,9,3分)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60º,又从A点测得D点的俯角β为30º,若旗杆底点G为BC的中点,则矮建筑物的高CD为(A)A.20米B.103米C.153米D.56米[解析]GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=AB•cot∠ACB=30×cot60º=103米,DF=AF•tan30º=103×33=10米,CD=AB-DF=30-10=20米。5.(2013湖北省鄂州市,7,3分)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.考点:相似三角形的判定与性质;锐角三角函数的定义.分析:首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.解答:解:在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA,∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC,∴△ABD∽△ACD,∴=,∵BD:CD=3:2,设BD=3x,CD=2x,∴AD==x,则tanB===.故选D.点评:本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长.6.(2013湖北省十堰市,1,3分)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为()A.8B.9C.10D.11考点:等腰梯形的性质;等边三角形的判定与性质.分析:首先构造直角三角形,进而根据等腰梯形的性质得出∠B=60°,BF=EC,AD=EF=5,求出BF即可.解答:解:过点A作AF⊥BC于点F,过点D作DE⊥BC于点E,∵梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,∴∠B=60°,BF=EC,AD=EF=5,∴cos60°===,解得:BF=1.5,故EC=1.5,∴BC=1.5+1.5+5=8.故选:A.点评:此题主要考查了等腰梯形的性质以及解直角三角形等知识,根据已知得出BF=EC的长是解题关键.7.(2013山东德州,13,4分)2cos300的值是。【答案】26【解析】2cos300=2×23=26.【方法指导】本题考查了实数运算.记忆特殊角30°、45°、60°的三角函数正弦、余弦、正切值时,平时可以借助图形简单计算取得,也可以把这些函数值列图表找规律取得.【易错警示】对识记30°、45°、60°的三角函数正弦、余弦、正切值张冠李戴,从而产生计算经过错误.8.(湖南株洲,5,3分)如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是()A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上【答案】:C【解析】:观察图像,通过度量即可得出答案.【方法指导】:本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).二.填空题1.(2013湖北孝感,15,3分)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.解答:解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DE=BE=AB﹣AE=18﹣6=12(m).故答案为:12.点评:本题考查俯角的知识.此题难度不大,注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.2.(2013•东营,15,4分)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60,在教学楼三楼D处测得旗杆顶部的仰角为30,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.答案:9解析:过B作BE⊥CD于点E,设旗杆AB的高度为x,在RtABC中,tanABACBAC,所以3tantan6033ABxxACxACB,在RtBDE中,33BEACx,60BOE,tanBEBDEDE,所以331tan33xBEDExBDE,因为CE=AB=x,所以163DCCEDExx,所以x=9,故旗杆的高度为9米.3.(2013·泰安,24,3分)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE-BE=x-x=25,解得:x=,故AB=25(+1)=67.5海里.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.4.(2013贵州省黔东南州,13,4分)将一副三角尺如图所示叠放在一起,则的值是.考点:相似三角形的判定与性质.分析:由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案.解答:解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在RtACD中,∠D=30°,∴CD==AC,∴==.故答案为:.点评:此题考查了相似三角形的判定与性质与三角函数的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2013湖北省十堰市,1,3分)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.考点:解直角三角形的应用-仰角俯角问题.分析:作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.解答:解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.6(2013江苏扬州,13,3分)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.【答案】6.【解析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD.在Rt△ABD中,∵sin∠ABC=ADAB=0.8,∴AD=5×0.8=4.则BD=22ABAD=2254=3.∴BC=BD+CD=3+3=6.所以应填6.【方法指导】本题考查了解直角三角形的知识,难度一般,解答此类题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.【易错警示】本题综合了等腰三角形、直角三角形、锐角三角函数等知识,在解决问题时,不能综合运用知识,或掌握知识不全面都会出现错误.7.(2013贵州安顺,14,4分)在Rt△ABC中,∠C=90°,tanA=34,BC=8,则△ABC的面积为.【答案】:24.【解析】∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.【方法指导】本题考查解直角三角形的知识,【易错警示】考点:解直角三角形.根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.8.(2013四川成都,14,4分)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为______米.【答案】100.ABC30°第14题图【解析】在Rt△ABC中,BC=AB·sin∠A=200×12=100.故填“100”.【方法指导】有关斜坡的概念如下:(1)坡面与水平面的夹角叫坡角;(2)坡比也叫坡度,通常用字母i表示,i=铅直高度水平宽度=坡角的正切值.三.解答题1.(2013白银,22,6分)某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.解答:解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=3.∴BC=CA﹣BA=(3﹣3)米.答:路况显示牌BC是(3﹣3)米.点评:此题主要考查了
本文标题:中考数学试卷分类汇编:解直角三角形
链接地址:https://www.777doc.com/doc-5526371 .html