您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 纺织服装 > 92河海大学材料力学习题库
河海大学材料力学习题库1-1图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量Mx,即扭矩,其大小等于M。1-2如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。解:应力p与斜截面m-m的法线的夹角α=10°,故σ=pcosα=120×cos10°=118.2MPaτ=psinα=120×sin10°=20.8MPa1-3图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100MPa,底边各点处的正应力均为零。试问杆件横截面上存在何种内力分量,并确定其大小。图中之C点为截面形心。解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力FN=100×106×0.04×0.1/2=200×103N=200kN其力偶即为弯矩Mz=200×(50-33.33)×10-3=3.33kN·m返回1-4板件的变形如图中虚线所示。试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。解:返回第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。解:(a)FNAB=F,FNBC=0,FN,max=F(b)FNAB=F,FNBC=-F,FN,max=F(c)FNAB=-2kN,FN2BC=1kN,FNCD=3kN,FN,max=3kN(d)FNAB=1kN,FNBC=-1kN,FN,max=1kN2-2图示阶梯形截面杆AC,承受轴向载荷F1=200kN与F2=100kN,AB段的直径d1=40mm。如欲使BC与AB段的正应力相同,试求BC段的直径。解:因BC与AB段的正应力相同,故2-3图示轴向受拉等截面杆,横截面面积A=500mm2,载荷F=50kN。试求图示斜截面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。解:返回2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A承受载荷F=80kN作用。杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限σs=320MPa,安全因数ns=2.0。试校核桁架的强度。解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件。2-5(2-14)图示桁架,承受载荷F作用。试计算该载荷的许用值[F]。设各杆的横截面面积均为A,许用应力均为[σ]。解:由C点的平衡条件由B点的平衡条件1杆轴力为最大,由其强度条件返回2-6(2-17)图示圆截面杆件,承受轴向拉力F作用。设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值。已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa。解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d=1.225:0.333:12-7(2-18)图示摇臂,承受载荷F1与F2作用。试确定轴销B的直径d。已知载荷F1=50kN,F2=35.4kN,许用切应力[τ]=100MPa,许用挤压应力[σbs]=240MPa。解:摇臂ABC受F1、F2及B点支座反力FB三力作用,根据三力平衡汇交定理知FB的方向如图(b)所示。由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm。在轴向拉F=6kN的作用下,测得试验段伸长Δl=0.15mm,板宽缩短Δb=0.014mm。试计算硬铝的弹性模量E与泊松比μ。解:由胡克定律返回3-2(3-5)图示桁架,在节点A处承受载荷F作用。从试验中测得杆1与杆2的纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4。试确定载荷F及其方位角θ之值。已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa。解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得返回3-3(3-6)图示变宽度平板,承受轴向载荷F作用。试计算板的轴向变形。已知板的厚度为δ,长为l,左、右端的宽度分别为b1与b2,弹性模量为E。解:返回3-4(3-11)图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持。设钢丝绳的轴向刚度(即产生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移。解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即返回3-5(3-12)试计算图示桁架节点A的水平与铅垂位移。设各杆各截面的拉压刚度均为EA。解:(a)各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移等于B点铅垂位移加2杆的伸长量,即(b)各杆轴力及伸长分别为A点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)返回3-6(3-14)图a所示桁架,材料的应力-应变关系可用方程σn=Bε表示(图b),其中n和B为由实验测定的已知常数。试求节点C的铅垂位移。设各杆的横截面面积均为A。(a)(b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16)图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与材料均相同。在梁的中点C承受集中载荷F作用。试计算该点的水平与铅垂位移。已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm。解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17)图示桁架,在节点B和C作用一对大小相等、方向相反的载荷F。设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C。解:根据能量守恒定律,有3-9(3-21)由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2。复合杆承受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形。解:设杆、管承受的压力分别为FN1、FN2,则FN1+FN2=F(1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形返回3-10(3-23)图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa。试确定各杆的横截面面积。解:设杆1所受压力为FN1,杆2所受拉力为FN2,则由梁BC的平衡条件得变形协调条件为杆1缩短量等于杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得返回3-11(3-25)图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa。若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积。解:设杆1、杆2、杆3的轴力分别为FN1(压)、FN2(拉)、FN3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移等于杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件A1=A2=2A3,取A1=A2=2A3=2448mm2。返回3-12(3-30)图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起。铆接后,温度升高40°,试计算铆钉剪切面上的切应力。钢与铜的弹性模量分别为Es=200GPa与Ec=100GPa,线膨胀系数分别为αls=12.5×10-6℃-1与αlc=16×10-6℃-1。解:钢杆受拉、铜管受压,其轴力相等,设为FN,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力返回3-13(3-32)图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F]。为了提高许用载荷之值,现将杆3的设计长度l变为l+Δ。试问当Δ为何值时许用载荷最大,其值[Fmax]为何。解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2大,由杆3的强度条件若将杆3的设计长度l变为l+Δ,要使许用载荷最大,只有三杆的应力都达到[σ],此时变形协调条件为返回4-1(4-3)图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m。试计算横截面上的最大、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力。解:因为τ与ρ成正比,所以返回4-2(4-10)实心圆轴与空心圆轴通过牙嵌离合器连接。已知轴的转速n=100r/min,传递功率P=10kW,许用切应力[τ]=80MPa,d1/d2=0.6。试确定实心轴的直径d,空心轴的内、外径d1和d2。解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件返回4-3(4-12)某传动轴,转速n=300r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW。(1)试求轴内的最大扭矩;(2)若将轮1与轮3的位置对调,试分析对轴的受力是否有利。解:(1)轮1、2、3、4作用在轴上扭力矩分别为轴内的最大扭矩若将轮1与轮3的位置对调,则最大扭矩变为最大扭矩变小,当然对轴的受力有利。返回4-4(4-21)图示两端固定的圆截面轴,承受扭力矩作用。试求支反力偶矩。设扭转刚度为已知常数。解:(a)由对称性可看出,MA=MB,再由平衡可看出MA=MB=M(b)显然MA=MB,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得返回4-5(4-25)图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起。设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa。试求套管与芯轴的扭矩及最大扭转切应力。解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2=M=2kN·m(1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最大扭转切应力分别为返回4-6(4-28)将截面尺寸分别为φ100mm×90mm与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接。试问在去掉扭力矩M0后,内、外管横截面上的最大扭转切应力。解:去掉扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0。去掉M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最大扭转切应力分别为返回4-7(4-29)图示二轴,用突缘与螺栓相连接,各螺栓的材料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所承受的扭力矩为M=5.0kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力[σbs]=300MPa。试确定螺栓的直径d。解:设每个螺栓承受的剪力为FS,则由切应力强度条件由挤压强度条件故螺栓的直径返回第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示。试分析下列平衡微分方程中哪一个是正确的。解:B正确。平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定。截面弯矩和剪力的方向是不随坐标变化的,我们在处理这类问题时都按正方向画出。但是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程
本文标题:92河海大学材料力学习题库
链接地址:https://www.777doc.com/doc-5541969 .html