您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 8.2.5几个常用的分布
8.2.5几个常用的分布回顾复习如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.1.随机变量对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.2.离散型随机变量3、离散型随机变量的分布列的性质:12(1)()(1,2,...,);1(1,2,...,);(3)...1;(4)iiinPxpinpinppp(2)0离散型随机变量在某一范围内取值的概率等于其在这个范围内取每一个值的概率之和。例1、在掷一枚图钉的随机试验中,令1,0,X针尖向上针尖向下如果会尖向上的概率为p,试写出随机变量X的分布列解:根据分布列的性质,针尖向下的概率是(1—p),于是,随机变量X的分布列是:X01P1—pp1、两点分布列象上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。练习:1、在射击的随机试验中,令X=如果射中的概率为0.8,求随机变量X的分布列。0,射中,1,未射中2、设某项试验的成功率是失败率的2倍,用随机变量去描述1次试验的成功次数,则失败率p等于()A.0B.C.D.121323C分析下面的试验,它们有什么共同特点?⑴投掷一个骰子投掷5次;⑵某人射击1次,击中目标的概率是0.8,他射击10次;⑶实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛);⑷一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中抽取5个球;⑸生产一种零件,出现次品的概率是0.04,生产这种零件4件.共同特点是:多次重复地做同一个试验.在n次独立重复试验中,记iA是“第i次试验的结果”显然,12()nPAAA=∵“相同条件下”等价于各次试验的结果不会受其他试验的影响,∴上面等式成立.12()()()nPAPAPA1、n次独立重复试验:一般地,在相同条件下,重复做的n次试验称为n次独立重复试验.基本概念独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。探究投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?连续掷一枚图钉3次,就是做3次独立重复试验。用表示第i次掷得针尖向上的事件,用表示“仅出现一次针尖向上”的事件,则(1,2,3)iAi1B1123123123()()().BAAAAAAAAA由于事件彼此互斥,由概率加法公式得123123123,AAAAAAAAA和1123123123()()()()PBPAAAPAAAPAAA22223qpqpqpqp所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是23.qp思考?上面我们利用掷1次图钉,针尖向上的概率为p,求出了连续掷3次图钉,仅出现次1针尖向上的概率。类似地,连续掷3次图钉,出现次针尖向上的概率是多少?你能发现其中的规律吗?(03)kk33(),0,1,2,3.kkkkPBCpqk仔细观察上述等式,可以发现30123()(),PBPAAAq21123123123()()()()3,PBPAAAPAAAPAAAqp22123123123()()()()3,PBPAAAPAAAPAAAqp33123()().PBPAAAp基本概念2、二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为()(1),0,1,2,...,.kknknPXkCppkn此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。注:展开式中的第项.()()kknknnnPkcpqpq是1k运用n次独立重复试验模型解题例1某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中。(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率。(结果保留两个有效数字)例2实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).⑴试求甲打完5局才能取胜的概率.⑵按比赛规则甲获胜的概率.运用n次独立重复试验模型解题(2)记事件A“甲打完3局才能取胜”,记事件B=“甲打完4局才能取胜”,记事件C=“甲打完5局才能取胜”.事件D=“按比赛规则甲获胜”,则DABC,又因为事件A、B、C彼此互斥,故()()()()()PDPABCPAPBPC1331816162.答:按比赛规则甲获胜的概率为12.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12.⑴甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负奎屯王新敞新疆∴甲打完5局才能取胜的概率222141113()()22216PC.例3:在含有5件次品的100件产品中,任取3件,试求:(1)取到的次品数X的分布列;(2)至少取到1件次品的概率.解:(1)从100件产品中任取3件结果数为3100,C从100件产品中任取3件,其中恰有K件次品的结果为3595kkCC那么从100件产品中任取3件,其中恰好有K件次品的概率为35953100(),0,1,2,3kkCCpXkkCX0123P035953100CCC125953100CCC215953100CCC305953100CCC一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件产品数,则事件{X=k}发生的概率为*(),0,1,2,,min{,},,,,,knkMNMnNCCPXkkmCmMnnNMNnMNN其中且3、超几何分布X则称随机变量服从超几何分布.记为:xH(n,M,N),X01…mP…00nMNMnNCCC11nMNMnNCCCmnmMNMnNCCC称分布列为超几何分布练习从1~10这10个数字中随机取出5个数字,令X:取出的5个数字中的最大值.试求X的分布列.kXP具体写出,即可得X的分布列:X5678910P25212525252152523525270252126解:X的可能取值为.1065,,,k5,6,7,8,9,10.并且510C41kC=——求分布列一定要说明k的取值范围!
本文标题:8.2.5几个常用的分布
链接地址:https://www.777doc.com/doc-5563486 .html