您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 金融资料 > 压缩感知基本理论-回顾与展望-邵文泽
17120121JournalofImageandGraphicsVol.17No.1Jan.2012TN911.72A1006-8961201201-0001-12.J.20121711-122010-04-272011-05-238632007AA12Z1426080203960672074200702880501981—、、、、。E-mailshaowenze1010@yahoo.com.cn210094。、。Candès2006Nyquist。、、3。AdvancesandperspectivesoncompressedsensingtheoryShaoWenzeWeiZhihuiSchoolofComputerScienceandTechnologyNanjingUniversityofScienceandTechnologyNanjing210094ChinaAbstractInthepastcenturytheShannonsamplingtheoremhasunderlainnearlyallthemodernsignalacquisitiontechniques.Itclaimsthatthesamplingratemustbeatleasttwicethemaximumfrequencypresentinthesignal.Oneinherentdisadvantageofthetheoremhoweveristhelargenumberofdatasamplesparticularlyinthecaseofspecial-purposeapplications.Thesamplingdatahavetobecompressedforefficientstoragetransmissionandprocessing.RecentlyCandèsreportedanovelsamplingtheorycalledcompressedsensingalsoknownascompressivesamplingCS.Thetheoryassertsthatonecanrecoversignalsandimagesfromfarfewersamplesormeasurementsnotstrictlyspeakingaslongasoneadherestotwobasicprinciplessparsityandincoherenceorsparsityandrestrictedisometryproperty.TheaimofthisarticleistosurveytheadvancesandperspectivesoftheCStheoryincludingthedesignofsparsedictionariesthedesignofmeasurementmatricesthedesignofsparsereconstructionalgorithmsandourproposalofseveralimportantproblemstobestudied.Keywordscompressedsensingsparseapproximationincoherencemeasurementmatrixsparseoptimization0。Nyquist。。Nyquist。、、、2.cjig.cn17、。JPEG2000。1。NK。Nyquist。1/Fig.1Sketchmapoftraditionalsignalsamplingandcompression/decompressionNyquist。、、、1。NyquistCandès、Tao、Romberg、Donoho2-9。2。。2。2Fig.2Sketchmapofcompressivesampling。-10、11、12、13、14、15、16、17、18-19、20。Rice21-22。3123。。、、3。11.1RN。ψiNi=1RNx∈RNx=ΣNi=1siψix=Ψs1sxΨsi=〈xψi〉=ψ*ixΨ=ψ1|ψ2|…|ψNN×NΨ。12x∈RNΨK-1Kψii∈ΩΩ12…N|Ω|≤K13sKsi≠0i∈Ω。22x∈RNΨsx。3xΨ-。。———JPEG2000。1。、。、。Kbyte。3-Fig.3Sparserepresentationofsignalsintheformofmatrix-vector1.223yk=〈xφk〉k=12…M2x∈RNykφk。φkDeltaykNyquistφkykφkykFourier。MNxyy=Φx3x∈RNyM×1Φ=φ1|φ2|…|φM*M×N。x=Ψs3Θy=ΦΨs=Θs4Θ=ΦΨM×N。4-。x4y=Θx=ΦxΘ=Φ。4-Fig.4Sketchmapofcompressivesamplingintheformofmatrix-vectorΦMNxMN3。xΨ。1.3。1.3.136Φ~ΨRNΦ~*Φ~=IΨ*Ψ=IΦ~xΨx。Θ~=Φ~ΨμΘ~=槡Nmax1≤kj≤N|Θ~kj|。Φ~ΨμΦ~Ψ槡=Nmax1≤kj≤N〈φ~kψj〉5Φ~ΨΘ~=Φ~Ψ。Θ~L211≤μΘ~≤槡N。Θ~1槡/NΘ~μΘ~=1Θ~14.cjig.cn170Θ~μΘ~=槡N。μΘ~槡=NMN0。μΦ~Ψ=1Φ~Ψ。Φ~Ψ。1Φ~Ψ。16x∈RNΨK-。Φ~My=QΦ~x=QΘ~s=ΘsQM×NΘ=QΘ~M×N。M≥Cμ2Φ~ΨKlogN6C>03mins∈RN‖s‖1s.t.Θs=y73s=s。1Φ~Ψ。6μΦ~Ψykk=12…Mx。μΦ~Ψ1OKlogN。L1OKlogN。1K-7。1.3.2Candès。23。4K=12…ΘδK81-δK‖s‖22≤‖Θs‖22≤1+δK‖s‖228sK-8RIP。δK1ΘRIP。δ2K<1ΘRIPΘ2KΘT|T|=2K2K-ΘNullsi≠0i∈Ξ|Ξ|≤2K∩ΝΘ=0。ΘyK-s。K-s1y=Θs1K-s2≠s1y=Θs2。2K-s=s1-s2Θs=Θs1-s2=0δ2KΘRIP2K-ΘNull。Θ。RIP2L0、。223-24sRNK-Θ2Kδ2K<13mins∈RN‖s‖0s.t.Θs=y9s=s。2。Θ2K11234。2L09NP-hard。3523sRNδ2K<槡2-13mins∈RN‖s‖1s.t.Θs=y10s‖s-s‖2≤C‖s-sK‖1槡/K‖s-s‖1≤C‖s-sK‖111C>0sKsK15sK0。3Θ2KL1。xΨK-sKs=s。Θ2K0.41410MN。3K-。11CsN-K。MKNΨΦ。Nyquist。223y=Φx+z12z。4523sRNδ2K槡<2-112mins∈RN‖s‖1s.t.‖Θs-y‖2≤ε13εs‖s-s‖2≤C1‖s-sK‖1槡/K+C2ε14C1>0、C2>0sKsK。1412。。4。MKNΨΦ。3、4CandèsRIP224-27。。、928-41。22.1x。。。、、。Wavelet1Ridgelet、Curvelet、Bandlet、ContourletBeyondWavelet42-48“”49-55。、、、。53。53Fig.53Dsketchmapsofdifferentgeometricalstructuresinimages1993MallatZhang49。6.cjig.cn17。“”。。。NN。。。WaveletCosine、Gabor50、Refinement-Gaussian51、Gabor52。Wavelet、CosineWaveletWaveletCosine。Gabor。Gabor。Refinement-GaussianGauss。Gabor“”532Gabor、、。54-56。K-SVD。。。。57-61。5859。2.2。。。CandèsMKN。2.2.1Φ~Ψ。μΦ~Ψ=17OKlogN。Φ~ΨDeltaFourier24623。1x∈RNK-φ~kFourierφ~kj=N-1/2e-i2πkj/NψjDeltaψjk=δj-kFourierM=OKlogNsΩ|Ω|=Mx∈RNFourierK-φ~kDeltaφ~kj=δj-kψjFourierψjk=N-1/2ei2πjk/NM=OKlogN。7M=Oμ2Φ~ΨKlogN223。Φ~NoiseletΨHarrWaveletμΦ~Ψ槡=2ΨDaubechiesD4WaveletμΦ~Ψ=2.2Ψ17DaubechiesD8WaveletμΦ~Ψ=2.9。ΨΦ~Φ~Ψ23。NΦ~Ψ2log槡NΦ~GaussianBernoulliΦ~Ψ。1K-。xR-Lpxx1≥…≥xNixixi≤Ri-1/p1≤i≤N15xp。。15Φ~ΨΦ~Ψ。54x∈RNΨ150<p<1‖x‖1≤Rα。Φ~MM≥C·μ2Φ~ΨKlogNC>03mins∈RN‖s‖1s.t.Θs=y161611-ON-ρ/α‖s-s‖2≤CpαRK/logN-r17r=1/p-1/2Cpαpα。2.2.25233、4ΘΦRIP。Φ。RIP。。2.2.1Φ~ΨM≥CKlogN4CΘ=QΦ~ΨRIP。RIPOn-ββ>0M≥CKlogN5。2.2.1Φ~Φ1RMNΦ21/MΦ3±1槡/MBernoulliΦ。ΨΦM≥CKlogN/KΘ=ΦΨRIP。ΨΦ。Θ=ΦΨΦΨ。2.3。。3。、、。2K-Θ2K1L0。L0L0NP-hard。N。。L2s。3、、62-65。3。1L166。6L2、L1、L02D。3ΘRIPL0L1。L18.cjig.cn17BP8。BP6467M≥cKc≈logN/KON3L1。68-69、LASSO70、LARs71、GPSR72、/SIT/HIT2473-74。OKlogN/K。6L2、L1、L02DFig.62DsketchmapsofsparsesignalreconstructionbasedonL2L1L02。MP49、OMP75-77、OMPGP78、ROMP34、TMP79、StOMP32、SP80、CoSaMP33、SAMP81。OKlogN。M≥cKc≈2logNOMPONK2。BPOMP。DonohoStOMPOMP。9SAMP。3。、、。Lp0<p≤1FOCUSS318283-85。Chartrand83LpδaK+bδa+1K<b-1b>1a=bp/2-p2δ2K<1。Ji40GaussianGamma、Babacan86LaplacianJeffreyBayesianCS2。3、。3.11L1L1。L1Ψ、Φ、M、。。M。2ΨΦΘ=ΦΨRIP。MΨ。Φ3ΨΘ=ΦΨRIPMΦRIPM19。3、。1。87。Φ。。。。3.21、、“”。、。。23、4ΨΦΘ=ΦΨRIP。ΨΦ。、、、。。3、、NMR。L1。L1。4Mistretta。。。CandèsM≥2KFourier388。。。3EmmanuelJ.Candès、TerenceTao、JustinRomberg。、、、、、、、。Nyquist。。、、。1L12345610.cjig.cn17。。、、、、。。。Nyquist88。References1MallatS.AWaveletTourofSignalProcessingM.2nded.NewYorkAcademicPress1999.MallatS.M.2..1999.2CandèsE.CompressivesamplingC//ProceedingsoftheInternationalCongressofMathematicians.MadridSpainEuropeanMathematicalSocietyPublishingHouse200631433-1452.3CandèsERombergJTaoT.RobustuncertaintyprinciplesExacts
本文标题:压缩感知基本理论-回顾与展望-邵文泽
链接地址:https://www.777doc.com/doc-5563860 .html