您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学选修1-1 双曲线的简单几何性质11 ppt
双曲线的简单几何性质(一)上一节,我们认识了双曲线的标准方程:形式一:(焦点在x轴上,(-c,0)、(c,0)))0,0(12222babyax1F2F形式二:(焦点在y轴上,(0,-c)、(0,c))其中)0,0(12222babxay1F2F222bac双曲线的图象特点与几何性质到现在仍是一个谜?现在就用方程来探究一下!如何探究呢?类比椭圆几何性质的研究方法椭圆几何性质包括哪些呢?.oYX标准方程范围对称性顶点焦点对称轴离心率准线关于X,Y轴,原点对称(±a,0),(0,±b)(±c,0)A1A2;B1B2ace-a≤xa,-by≤b12222byaxF1F2A1A2B2B1复习椭圆的图像与性质2、对称性一、研究双曲线的简单几何性质)0,0(12222babyax1、范围axaxaxax,,12222即关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa)0,a(A)0,a(A21、顶点是如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(22mmyx22byxaa22221,(0,0)xyabab双曲线xyOxabyxaby5、渐近线)0,0(,12222babyax双曲线byxa直线叫做双曲线的渐进线.的渐进线为:13422yxxy23的渐进线为:12222yxxyxyOxabyxaby5、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。ca0e1e是表示双曲线开口大小的一个量,e越大开口越大!(1)定义:(2)e的范围:(3)e的含义:1e1)ac(aacab2222也增大增大且时,当ab,e),,0(ab),1(e的夹角增大增大时,渐近线与实轴e(4)等轴双曲线2e221169xy练习双曲线范围:)1(Ryxx,44或顶点坐标:)2()0,4(),0,4(21AA焦点坐标:)3()0,5(),0,5(21FF离心率:)4(45ace1F2F1AxyO2A1yx思考:的图像是什么形状?轴轴和图像无限靠近yx1,xyyx轴轴叫做的渐进线.例2:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922xy1342222xy5342245acexy34例题讲解焦点在x轴上的双曲线的几何性质双曲线标准方程:YX12222byax1、范围:x≥a或x≤-a2、对称性:关于x轴,y轴,原点对称。3、顶点:A1(-a,0),A2(a,0)4、轴:实轴A1A2虚轴B1B2A1A2B1B25、渐近线方程:6、离心率:e=acbyxa关于x轴、y轴、原点对称图形方程范围对称性顶点离心率)0(1babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay0012222Rxayay,或关于x轴、y轴、原点对称)1(eace渐近线0yxab..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)Ryaxax,或)1(eacebyxa如何记忆双曲线的渐进线方程?0yxbaayxb练习1、求下列双曲线的渐近线方程(1)4x2-9y2=36,(2)25x2-4y2=100.2x±3y=05x±2y=0例题讲解
本文标题:高二数学选修1-1 双曲线的简单几何性质11 ppt
链接地址:https://www.777doc.com/doc-5587040 .html