您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 带电粒子在电场中圆周运动题目及答案
带电粒子在电场中做圆周运动1.在方向水平的匀强电场中,一不可伸长的不导电细线一端连着一个质量为m、电量为+q的带电小球,另一端固定于O点。将小球拉起直至细线与场强平行,然后无初速释放,则小球沿圆弧作往复运动。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为(如图)。求:(1)匀强电场的场强。(2)小球经过最低点时细线对小球的拉力。解:(1)设细线长为l,场强为E,因电量为正,故场强的方向为水平向右。从释放点到左侧最高点,由动能定理有0KEGEWW,故)sin1(cosqElmgl,解得)sin1(cosqmgE(2)若小球运动到最低点的速度为v,此时线的拉力为T,由动能定理同样可得221mvqElmgl,由牛顿第二定律得lvmmgT2,联立解得]sin1cos23[mgT7.如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与B点的距离.(1)因小球恰能到B点,则在B点有22dmvmgB(1分)mOθ+qm/s22gdvB(1分)小球运动到B的过程,由动能定理221BmvmgdqEL(1分)m145212qEmgdqEmgdmvLB(1分)(2)小球离开B点,电场消失,小球做平抛运动,设落地点距B点距离为s,由动能定理小球从静止运动到B有221BvmmgdLqEm/s2422mmgdLqEvB(2分)221gtds4.02gdtm258tvxBm4.222xds(2分)2.如图所示,在E=103V/m的水平向左匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN连接,半圆轨道所在竖直平面与电场线平行,其半径R=40cm,一带正电荷q=10-4C的小滑块质量为m=40g,与水平轨道间的动摩因数=0.2,取g=10m/s2,求:(1)要小滑块能运动到圆轨道的最高点L,滑块应在水平轨道上离N点多远处释放?(2)这样释放的滑块通过P点时对轨道压力是多大?(P为半圆轨道中点)解析:(1)滑块刚能通过轨道最高点条件是,/2,2smRgvRvmmg滑块由释放点到最高点过程由动能定理:mgEqgRvmSmvRmgmgSEq221212S22=--代入数据得:S=20m(2)滑块过P点时,由动能定理:RmEqgvvmvmvEqRmgRPP)(---221212222在P点由牛顿第二定律:EqmgNRmvEqNP32代入数据得:N=1.5N3.如图所示,在沿水平方向的匀强电场中有一固定点o,用一根长度为l=0.40m的绝缘细线把质量为m=0.20kg,带有正电荷的金属小球悬挂在o点,小球静止在B点时细线与竖直方向的夹角为=037.现将小球拉至位置A使细线水平后由静止释放,求:(1)小球运动通过最低点C时的速度大小.(2)小球通过最低点C时细线对小球的拉力大小.(3)如果要使小球能绕o点做圆周运动,则在A点时沿垂直于OA方向上施加给小球的初速度的大小范围。(g取10m/s2,sin037=O.60,cos037=0.80)解:4.如图所示,在匀强电场中一带正电的小球以某一初速度从绝缘斜面上滑下,并沿与斜面相切的绝缘圆轨道通过最高点.已知斜面倾角为300,圆轨道半径为R,匀强电场水平向右,场强为E,小球质量为m,带电量为Emg33,不计运动中的摩擦阻力,则小球至少应以多大的初速度滑下?在此情况下,小球通过轨道最高点的压力多大?解析:小球的受力如图9所示,从图中可知:3333EmgmgEmgqEtg,030.所以带电小球所受重力和电场力的合力始终垂直于斜面,小球在斜面上做匀速直线运动,其中mgmgF332cos把小球看作处于垂直斜面向下的等效力场F中,等效力加速度gmFg332,,小球在B点的速度最小,为RgRgvB332,,由功能关系可得:,2222121RmgmvmvBARggRRgRgvvBA331033243324,2此即为小球沿斜面下滑的最小速度.设C点的速度为vc,则)cos1(2121,22RmgmvmvBCRgRgRgRgvvBC)232()231(334332)cos1(2,2小于球通过最高点C时,向心力由重力和轨道压力提供,因而有:图8图9RmvmgNC2mgRRgmmgRmvNC)232(2mg)332(
本文标题:带电粒子在电场中圆周运动题目及答案
链接地址:https://www.777doc.com/doc-5594696 .html