您好,欢迎访问三七文档
第一节单容水箱特性的测试一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机及相关软件3.万用电表一只三、实验原理图1-1单容水箱特性测试结构图由图1-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时Q1-Q2=0(1)动态时,则有Q1-Q2=dv/dt(2)式中V为水箱的贮水容积,dV/dt为水贮存量的变化率,它与H的关系为dV=Adh,即dV/dt=Adh/dt(3)A为水箱的底面积。把式(3)代入式(2)得Q1-Q2=Adh/dt(4)基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为Q1-h/RS=Adh/dt即ARsdh/dt+h=KQ1或写作H(s)K/Q1(s)=K/(TS+1)(5)式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。式(5)就是单容水箱的传递函数。对上式取拉氏反变换得(6)当t—∞时,h(∞)=KR0,因而有K=h(∞)/R0=输出稳态值/阶跃输入当t=T时,则有h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。图1-2单容水箱的单调上升指数曲线当由实验求得图1-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图1-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得的传递函数为:图1-3单容水箱的阶跃响应曲线四、实验内容与步骤1.按图1-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。2.接通总电源和相关的仪表电源,并启动磁力驱动泵。3.把调节器设置于手动操作位置,通过调节器增/减的操作改变其输出量的大小,使水箱的液位处于某一平衡位置。4.手动操作调节器,使其输出有一个正(或负)阶跃增量的变化(此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一定的调节时间后,水箱的液位进入新的平衡状态,如图1-4所示。图1-4单容箱特性响应曲线5.启动计算机记下水箱液位的历史曲线和阶跃响应曲线。(1)正向输入曲线(2)负向输入曲线6.实验数据计算(1)正向输入T=t12-t1=1:53:55-1:52:18=1:37=97(s)h(∞)=h2(∞)-h1(∞)=74.71mm-26.81mm=49.7mmR0=Q2-Q1=459.8L/h-397.9L/h=61.9L/hK=h(∞)/R0=49.7/61.9=0.8029H(S)=TSTK1/×SR0=KSR0-TSKR10==S7.49-0103.07.49S(2)负向输入:T=t23-t2=1:57:24-1:56:06=1:18=78(s)h(∞)=h2(∞)-h3(∞)=74.71mm-37.44mm=37.27mmR0=Q2-Q1=459.8L/h-388.0L/h=71.8L/hK=h(∞)/R0=37.27/71.8=0.5191H(S)=TSTK1/×SR0=KSR0-TSKR10==S27.37-0128.027.37S7.实验曲线所得的结果填入下表。测量值参数值放大系数K周期T时间常数τ液位h正阶跃输入0.802997(s)049.7mm负阶跃输入0.519178(s)037.27mm平均值0.661087.5043.49mm五、思考题1.用响应曲线法确定对象的数学模型时,其精度与哪些因素有关?答:因为系统用到了仪表,因此与仪表的精度有关,同时与出水阀开度的大小有关。并和放大系数K、时间常数T以及纯滞后时间有关。另外,也会受实验室电压的波动与测试软件的影响。2.如果采用中水箱做实验,其响应曲线与上水箱的曲线有什么异同?试分析差异原因。答:若采用中水箱做实验,它的响应曲线要比上水箱变化的慢。原因:因为中水箱的回路比上水箱的回路要长,上升相同的液位高度,中水箱要更长的时间。3.在本实验中阶跃信号是否可以任意选取,为什么?答:不可以。比如阶跃信号的幅值过大,则相当于K值过大,这样会产生超调节量,调节时间就会过长,因此阶跃信号不可以随意选取。
本文标题:单容水箱特性的测试
链接地址:https://www.777doc.com/doc-5597068 .html