您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2013临沂中考数学试题(解析版)
第1页共21页山东省临沂市2013年中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.(3分)(2013•临沂)﹣2的绝对值是()A.2B.﹣2C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2的绝对值是2,即|﹣2|=2.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•临沂)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50000000000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000000000用科学记数法表示为5×1010.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•临沂)如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45°C.55°D.65°考点:平行线的性质.分析:先求出∠3的度数,再根据平行线性质得出∠1=∠3,代入求出即可.解答:解:第2页共21页∵AB∥CD,∴∠1=∠3,∵∠2=135°,∴∠3=180°﹣135°=45°,∴∠1=45°,故选B.点评:本题考查了平行线性质和邻补角的应用,注意:两直线平行,内错角相等.4.(3分)(2013•临沂)下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4C.2x2•x3=2x5D.(x3)4=x7考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式专题:计算题.分析:A、本选项不是同类项,不能合并,错误;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.解答:解:A、本选项不是同类项,不能合并,错误;B、(x﹣2)2=x2﹣4x+4,本选项错误;C、2x2•x3=2x5,本选项正确;D、(x3)4=x12,本选项错误,故选C点评:此题考查了完全平方公式,合并同类项,单项式乘单项式,以及幂的乘方,熟练掌握公式及法则是解本题的关键.5.(3分)(2013•临沂)计算的结果是()A.B.C.D.考点:二次根式的加减法.分析:首先把两个二次根式化简,再进行加减即可.解答:解:=4﹣3=,故选:B.点评:此题主要考查了二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.6.(3分)(2013•临沂)化简的结果是()A.B.C.D.第3页共21页考点:分式的混合运算.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.解答:解:=•=.故选A.点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.(3分)(2013•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2考点:由三视图判断几何体;圆柱的计算.分析:首先判断出该几何体,然后计算其面积即可.解答:解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.点评:本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.8.(3分)(2013•临沂)不等式组的解集是()A.x≥8B.x>2C.0<x<2D.2<x≤8考点:解一元一次不等式组.分析:先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式①得:x>2,解不等式②得:x≤8,∴不等式组的解集为2<x≤8,第4页共21页故选D.点评:本题考查了解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集.9.(3分)(2013•临沂)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()A.94,94B.95,95C.94,95D.95,94考点:众数;中位数.分析:根据众数、中位数的定义求解即可.解答:解:这组数据按顺序排列为:88,92,93,94,95,95,96,故众数为:95,中位数为:94.故选D.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.10.(3分)(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC考点:线段垂直平分线的性质.分析:根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.解答:解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,∴Rt△BCE≌Rt△DCE(HL),故选:C.点评:此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.第5页共21页11.(3分)(2013•临沂)如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A.B.C.D.考点:列表法与树状图法;等腰三角形的判定.分析:根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.解答:解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:=.故选:D.点评:此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.12.(3分)(2013•临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°考点:圆周角定理.分析:首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.解答:解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,第6页共21页∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故选B.点评:此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.13.(3分)(2013•临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)考点:反比例函数综合题.分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),再求出b和a的关系和C点的坐标,由点C在双曲线上,求出a的值,进而求出B点坐标.解答:解:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOA中,tan60°==,∴b=a,∵点C是OB的中点,∴点C坐标为(,),∵点C在双曲线上,∴a2=,第7页共21页∴a=2,∴点B的坐标是(2,2),故选C.点评:本题主要考查反比例函数的综合题,解答本题的关键是求出点B的坐标,此题难度不大.14.(3分)(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.考点:动点问题的函数图象.分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质的OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.解答:解:根据题意BE=CF=t,CE=8﹣t,第8页共21页∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选B.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.(3分)(2013•临沂)因式分解4x﹣x3=﹣x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解-运用公式法.专题:因式分解.分析:先提出公因式,再用平方差公式因式分解.解答:解:4x﹣x3=﹣x(x2﹣4)=﹣x(x+2)(x﹣2).故答案是:﹣x(x+2)(x﹣2).点评:本题考查的是因式分解,先提出公因式,再用平方差公式因式分解.16.(3分)(2013•临沂)分式方程的解是x=2.考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程得到解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3(x﹣1),去括号得:2x﹣1=3x﹣3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.第9页共21页17.(3分)(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是3.考点:菱形的性质;等边三角形的判定与性质分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积.解答:解:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD∴AB•AE=CD•AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,
本文标题:2013临沂中考数学试题(解析版)
链接地址:https://www.777doc.com/doc-5601134 .html