您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 2019浙江省10套中考数学试题含答案
2019浙江省10套中考数学试题浙江省杭州市2019年中考数学试题一、选择题:本大题有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项符合题目要求的.1.计算下列各式,值最小的是()A.9102B.2+0×1-9C.2+0-1+9D.2+0+1-92.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=-3,n=2C.m=2,n=3D.m=-2,n=33.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=()A.2B.3C.4D.54.已知九年级某班30名学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.30)72(32xxB.30)72(23xxC.72)30(32xxD.72)30(23xx5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.AEANANADB.CEMNMNBDC.MCNEBMDND.BMNEMCDN7.在△ABC中,点D,E分别在ABC中,若一个内角等于另两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.已知一次函数baxy1和)(2baabxy,函数1y和2y的图象可能是()9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的图象与x轴有N个交点,则()A.xbxasinsinB.xbxacoscosC.xbxacossinD.xbxasincos10.在平面直角坐标系,已知ba,设函数))((bxaxy的图象与x轴有M个交点,函数)1)(1(bxaxy的图象与x轴有N个交点,则()A.M=N-1或M=N+1B.M=N-1或M=N+2C.M=N或M=N+1D.M=N或M=N-1二、填空题:本大题有6小题,每小题4分,共24分11.因式分解:21x.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).14.在直角三角形ABC中,若2AB=AC,则cosC=.15.某函数满足当自变量1x时,函数值0y;当自变量0x时,函数值1y,写出一个满足条件的函数表达式.16.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边,点E,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A点,D点的对称点为D点,若∠FPG=90°,△AEP的面积为4,△PHD的面积为1,则矩形ABCD的面积等于.三、解答题:本大题有7个小题,共66分.17.(本题6分)化简:122442xxx.圆圆的解答如下:xxxxxxxx2)4()2(2412244222圆圆的解答正确吗?如果不正确,写出正确的解答.18.(本题8分)称量五框水果的质量,若每框以50kg为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:kg).(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为甲x、乙x,写出甲x和乙x之间的等量关系;②甲、乙两组数据的方差分别为2甲S、2乙S,比较2甲S和2乙S的大小,并说明理由.19.(本题8分)如图,在△ABC中,BCABAC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B;(2)以点B为圆心,线段AB长为半径画弧,与BC边交于点Q,连接AQ,若∠AQC=3∠B,求∠B的度数.20.(本题8分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发:①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围;②方方能否在当天11点30分前到达B地?说明理由.21.(本题10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为1S,点E在DC边上,点G在BC的延长线上,设线段AD和DE为邻边的矩形的面积为2S,且1S=2S.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:DH=GH.22.(本题12分)设二次函数2121,)()((xxxxxxy是实数).(1)甲求得当0x时,0y;当1x时,0y;乙求得当21x时,21y,若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含21,xx的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当1021xx时,求证:1610mn.23.(本题12分)如图,已知锐角三角形ABC内接于圆O,OD、BC交于点D,连接OA.(1)若∠BAC=60°,①求证:OD=21OA;②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:02nm.浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A.B.2C.D.-2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。2.下列计算正确的是()A.B.C.D.【答案】D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A.B.C.D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A.x2B.x≠2C.x≠0D.x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。5.如图,下列关于物体的主视图画法正确的是()A.B.C.D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。故答案为:C。【分析】简单几何体的三视图,就是分别从正面向后看,从左面向右看,从上面向下看得到的正投影,能看见的轮廓线需要画成实线,看不见但又存在的轮廓线需要画为虚线,故空心圆柱的主视图应该是一个长方形,加两条虚竖线。6.不等式的解为()A.B.C.D.【答案】A【考点】解一元一次不等式【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1.故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A.m=-1B.m=0C.m=4D.m=5【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。故答案为:D【分析】由一元二次方程的根的判别式可知,当b²-4ac=(-4)²-4×1×m≥0时,方程有实数根,解不等式可得m的范围,则不在m的取值范围内的值就是判断命题是假命题的值。8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:甲乙丙丁x24242320S22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【答案】B【考点】平均数及其计算,方差【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。故答案为:B【分析】因为平均数越大,产量越高,所以A和B符合题意;方差越小,波动越小,产量越稳定,所以B、D符合题意,综合平均数和方差可选B。9.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【答案】C【考点】平行线的性质,三角形的外角性质【解析】【解答】解:设直线n与AB的交点为E。∵∠AED是△BED的一个外角,∴∠AED=∠B+∠1,∵∠B=45°,∠1=25°,∴∠AED=45°+25°=70°∵m∥n,∴∠2=∠AED=70°。故答案为:C。【分析】设直线n与AB的交点为E。由三角形的一个外角等于和它不相邻的两个内角的和可得∠AED=∠B+∠1,再根据两直线平行内错角相等可得∠2=∠AED可求解。10.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cmB.4cmC.4.5cmD.5cm【答案】B【考点】圆锥的计算【解析】【解答】解:设AB=x,由题意,得,解得x=4.故答案为:B。【分析】设AB=x,根据扇形的弧长计算公式算出弧AF的长,根据该弧长等于直径为(6-x)的圆的周长,列出方程,求解即可。11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,由题意,得,将两方程相减得y-x=7,∴y=x+7,将y=x+7代入5x+3y=a-10得8x=a-31,∴若只买8支玫瑰花,则她所带的钱还剩31元。故答案为:A【分析】设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,根据若买5支玫瑰花和3支百合花所带的钱还剩10元,若买3支玫瑰花和5支百合花所带的钱还差4元,列出方程组,根据等式的性
本文标题:2019浙江省10套中考数学试题含答案
链接地址:https://www.777doc.com/doc-5624032 .html