您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 六年奥数综合练习题十二答案(比和比例关系)
一、比和比的分配例1甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比.例2如右图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲、乙两部分,它们的面积之比是10∶7.求上底AB与下底CD的长度之比例3大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比.花了多少钱?例5有甲、乙、丙三枚长短不相同的钉子,甲与乙,而它们留在墙外的部分一样长.问:甲、乙、丙的长度之比是多少?例6甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元?例7一个分数,分子与分母之和是100.如果分子加23,分母加32,例8加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?例9某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:甲:12∶13,乙:5∶3,丙:2∶1,那么丙有多少名男会员?例10一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间?二、比的变化例11甲、乙两同学的分数比是5∶4.如果甲少得22.5分,乙多得22.5分,则他们的分数比是5∶7.甲、乙原来各得多少分?例13张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?例14A和B两个数的比是8∶5,每一数都减少34后,A是B的2倍,求这两个数.例15小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?例16粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了多少时间?例17箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱子里取出7只白球,15只红球,经过若干次后,箱子里剩下3只白球,53只红球,那么,箱子里原来红球数比白球数多多少只?三、比例的其他问题加33张,他们两人取的画片一样多.问这些画片有多少张?例20有两堆棋子,A堆有黑子350个和白子500个,B堆有黑子人,问高、初中毕业生共有多少人?下的钱共有多少元?用100个银币买了100头牲畜,问猪、山羊、绵羊各几头?这是十八世纪瑞士大数学家欧拉(1707~1783)提出的问题.例24某商品76件,出售给33位顾客,每位顾客最多买三件,买1件按定价,买2件降价10%,买3件降价20%.最后结算,平均每件恰好按原定价的85%出售,那么买3件的顾客有多少人?
本文标题:六年奥数综合练习题十二答案(比和比例关系)
链接地址:https://www.777doc.com/doc-5624864 .html