您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 复数的几何意义ppt
复数的几何意义湛江开发区一中高二数学备课组复数的几何意义复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)xyobaZ(a,b)建立了平面直角坐标系来表示复数的平面x轴------实轴y轴------虚轴(数)(形)------复数平面(简称复平面)一一对应z=a+bi(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。辨析:1.下列命题中的假命题是()D2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的()。(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件C例题讲解例1:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围.020622mmmm解:由1223mmm或得)2,1()2,3(m变式:证明对一切m,此复数所对应的点不可能位于第四象限。问题四:实数绝对值的几何意义:能否把绝对值概念推广到复数范围呢?XOAa|a|=|OA|实数a在数轴上所对应的点A到原点O的距离。xOz=a+biy|z|=|OZ|=复数的绝对值复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离。0)(aa0)(aa(复数的模)的几何意义:Z(a,b)22ba例2求下列复数的模:(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i(3)满足|z|=5(z∈C)的z值有几个?思考:(2)满足|z|=5(z∈R)的z值有几个?(4)z4=1+mi(m∈R)(5)z5=4a-3ai(a0)(1)复数的模能否比较大小?这些复数对应的点在复平面上构成怎样的图形?xyO设z=x+yi(x,y∈R)满足|z|=5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–55||22yxz2522yx图形:以原点为圆心,5为半径的圆上5xyO设z=x+yi(x,y∈R)满足3|z|5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–53–3–335322yx25922yx图形:以原点为圆心,半径3至5的圆环内练习:已知复数m=2-3i,若复数z满足不等式|z-m|=1,则z所对应的点的集合是什么图形?以点(2,-3)为圆心,1为半径的圆上课堂小结:一.数学知识:二.数学思想:三.数的发展和完善过程给我们的启示:(1)复平面(2)复数的模(3)类比思想(2)数形结合思想(1)转化思想课题:复数的几何意义
本文标题:复数的几何意义ppt
链接地址:https://www.777doc.com/doc-5632692 .html