您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 综合/其它 > 2015年安徽省高考数学试题及答案(文科)【解析版】
2015年安徽省高考数学试题及答案(文科)【解析版】22015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015•安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3iB.﹣1+3iC.3+iD.﹣1+i【答案】C.【解析】复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.2.(5分)(2015•安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁RB)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}【答案】B.【解析】∁RB={1,5,6};∴A∩(∁RB)={1,2}∩{1,5,6}={1}.33.(5分)(2015•安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件..4.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=lnxB.y=x2+1C.y=sinxD.y=cosx【答案】D【解析】对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;4对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;5.(5分)(2015•安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1B.﹣2C.﹣5D.1【答案】A.【解析】由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;56.(5分)(2015•安徽)下列双曲线中,渐近线方程为y=±2x的是()A.x2﹣=1B.﹣y2=1C.x2﹣=1D.﹣y2=1【答案】A.【解析】由双曲线方程﹣=1(a>0,b>0)的渐近线方程为y=±x,由A可得渐近线方程为y=±2x,由B可得渐近线方程为y=±x,由C可得渐近线方程为y=x,由D可得渐近线方程为y=x.7.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为()6A.3B.4C.5D.6【答案】B.【解析】模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.8.(5分)(2015•安徽)直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,则b=()A.﹣2或12B.2或﹣12C.﹣2或﹣12D.2或12【答案】D.【解析】x2+y2﹣2x﹣2y+1=0可化为(x﹣1)2+(y﹣1)2=1∵直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切,∴圆心(1,1)到直线的距离d==1,解得:b=2或12.79.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.2【答案】C.【解析】可画出立体图形为∴三棱锥O﹣ABC,OE⊥底面ADC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC==1,8S△OAB=S△OBC=×2=该四面体的表面积:2,10.(5分)(2015•安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0【答案】A【解析】f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,二、填空题11.(3分)(2015•安徽)lg+2lg2﹣()﹣1=.9【答案】-1.【解析】原式=lg5﹣lg2+2lg2﹣2=lg5+lg2﹣2=lg10﹣2=1﹣2=﹣1;12.(3分)(2015•安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.【答案】2.【解析】∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.13.(3分)(2015•安徽)已知数列{an}中,a1=1,an=an﹣1+(n≥2),则数列{an}的前9项和等于.【答案】27.【解析】∵an=an﹣1+(n≥2),∴an﹣an﹣1=(n≥2),∴数列{an}的公差d=,10又a1=1,∴an=1+(n﹣1)=,∴S9=9a1+•d=9+36×=27,14.(3分)(2015•安徽)在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.【答案】.【解析】由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;15.(3分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则下列结论中正确的是.(写出所有正确结论得序号)①为单位向量;②为单位向量;③;④∥;⑤(4+)⊥.【答案】①④⑤11【解析】△ABC是边长为2的等边三角形,已知向量满足=2,=2+,则=,AB=2,所以||=1,即是单位向量;①正确;因为=2,所以,故||=2;故②错误;④正确;夹角为120°,故③错误;⑤(4+)•=4=4×1×2×cos120°+4=﹣4+4=0;故⑤正确.三、解答题16.(2015•安徽)已知函数f(x)=(sinx+cosx)2+cos2x(1)求f(x)最小正周期;(2)求f(x)在区间上的最大值和最小值.【解析】(1)∵函数f(x)=(sinx+cosx)2+cos2x=1+sin2x+cos2x=1+sin(2x+),∴它的最小正周期为=π.(2)在区间上,2x+∈[,],故当2x+=时,f(x)取得最小值为1+×(﹣)=0,12当2x+=时,f(x)取得最大值为1+×1=1+.17.(2015•安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.13【解析】(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.18.(2015•安徽)已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.14(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.【解析】(1)∵数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{an}的通项公式an=2n﹣1;(2)Sn==2n﹣1,∴bn===﹣,∴数列{bn}的前n项和Tn=+…+﹣=﹣=1﹣19.(2015•安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.15(1)【解析】由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以VP﹣ABC=•S△ABC•PA=;(2)【解析】过B作BN⊥AC,垂足为N,过N作MN∥PA,交PA于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.1620.(2015•安徽)设椭圆E的方程为=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,﹣b),N为线段AC的中点,证明:MN⊥AB.【解析】(1)设M(x,y),∵A(a,0)、B(0,b),点M在线段AB上且|BM|=2|MA|,∴=2,即(x﹣0,y﹣b)=2(a﹣x,0﹣y),解得x=a,y=b,即M(a,b),又∵直线OM的斜率为,∴=,∴a=b,c==2b,∴椭圆E的离心率e==;(2)证明:∵点C的坐标为(0,﹣b),N为线段AC的中点,∴N(,﹣),∴=(,﹣),又∵=(﹣a,b),∴•=(﹣a,b)•(,﹣)=﹣a2+=(5b2﹣a2),17由(1)可知a2=5b2,故•=0,即MN⊥AB21.(2015•安徽)已知函数f(x)=(a>0,r>0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.【解析】(1)∵函数f(x)=(a>0,r>0),∴x≠﹣r,即f(x)的定义域为(﹣∞,﹣r)∪(﹣r,+∞).又∵f(x)==,∴f′(x)==,∴当x<﹣r或x>r时,f′(x)<0;当﹣r<x<r时,f′(x)>0;因此,f(x)的单调递减区间为:(﹣∞,﹣r)、(r,+∞),递增区间为:(﹣r,r);(2)由(1)的解答可得f′(x)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,∴x=r是f(x)的极大值点,18∴f(x)在(0,+∞)内的极大值为f(r)====100192015年安徽省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(安徽卷)数学(文科)1.(5分)(2015•安徽)设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3iB.﹣1+3iC.3+iD.﹣1+i2.(5分)(2015•安徽)设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁RB)=()A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}3.(5分)(2015•安徽)设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C必要不充分条件D既不充分也不必20..要条件4.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=lnxB.y=x2+1C.y=sinxD.y=cosx5.
本文标题:2015年安徽省高考数学试题及答案(文科)【解析版】
链接地址:https://www.777doc.com/doc-5632722 .html