您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年四川省泸州市中考数学试卷
2017年四川省泸州市中考数学试卷一、选择题(大题共12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣7的绝对值是()A.7B.﹣7C.D.﹣2.(3分)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.(3分)下列各式计算正确的是()A.2x•3x=6xB.3x﹣2x=xC.(2x)2=4xD.6x÷2x=3x4.(3分)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.5.(3分)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5B.﹣5C.3D.﹣36.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.87.(3分)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.(3分)下列曲线中不能表示y是x的函数的是()A.B.C.D.9.(3分)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.10.(3分)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7B.11C.12D.1611.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3B.4C.5D.6二、填空题(本大题共4小题,每题3分,共12分)13.(3分)在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.14.(3分)分解因式:2m2﹣8=.15.(3分)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.16.(3分)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.三、解答题(本大题共3小题,每题6分,共18分)17.(6分)计算:(﹣3)2+20170﹣×sin45°.18.(6分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.19.(6分)化简:•(1+)四、本大题共2小题,每小题7分,共14分20.(7分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.(7分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.五、本大题共2小题,每小题8分,共16分.22.(8分)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.(8分)一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=的图象相交,求使y1<y2成立的x的取值范围.六、本大题共两个小题,每小题12分,共24分24.(12分)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6,AB=10,求CG的长.25.(12分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.2017年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(大题共12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•泸州)﹣7的绝对值是()A.7B.﹣7C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(3分)(2017•泸州)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:567000=5.67×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•泸州)下列各式计算正确的是()A.2x•3x=6xB.3x﹣2x=xC.(2x)2=4xD.6x÷2x=3x【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6x2,不符合题意;B、原式=x,符合题意;C、原式=4x2,不符合题意;D、原式=3,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•泸州)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行,每行一个小正方体.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•泸州)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a+b的值为()A.5B.﹣5C.3D.﹣3【分析】根据关于原点的对称点,横纵坐标都变成相反数,可得a、b的值,根据有理数的加法,可得答案.【解答】解:由A(a,1)关于原点的对称点为B(﹣4,b),得a=4,b=﹣1,a+b=3,故选:C.【点评】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律:关于原点的对称点,横纵坐标都变成相反数.6.(3分)(2017•泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OB﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.7.(3分)(2017•泸州)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【分析】根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形,故错误;B、矩形的对角线相等,故错误;C、对角线互相垂直的平行四边形是菱形,故错误;D、对角线相等的平行四边形是矩形,正确,故选D.【点评】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2017•泸州)下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数是在一个变化过程中有两个变量x,y,一个x只能对应一个y.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.故选C.【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.9.(3分)(2017•泸州)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.【解答】解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.10.(3分)(2017•泸州)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是()A.7B.11C.12D.16【分析】由根与系数的关系可得出m+n=2t、mn=t2﹣2t+4,将其代入(m+2)(n+2)=mn+2(m+n)+4中可得出(m+2)(n+2)=(t+1)2+7,由方程有两个实数根结合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m+2)(n+2)的最小值.【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,∴m+n=2t,mn=t2﹣2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.故选D.【点评】本题考查了根与系数的关系、根的判别式以及二次函数的最值,根据根与系数的关系找出(m+2)(n+2)=(t+1)2+7是解题的关键.11.(3分)(2017•泸州)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案
本文标题:2017年四川省泸州市中考数学试卷
链接地址:https://www.777doc.com/doc-5637922 .html