您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年新疆乌鲁木齐市中考数学试卷人教版七年级上册数学精品测试题
2017年新疆乌鲁木齐市中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣22.(4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°3.(4分)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5D.a3b64.(4分)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小5.(4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.76.(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>27.(4分)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5B.﹣=5C.+5=D.﹣=58.(4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π9.(4分)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1B.C.2D.10.(4分)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)计算|1﹣|+()0=.12.(4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为.13.(4分)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.14.(4分)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为.15.(4分)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)解不等式组:.17.(8分)先化简,再求值:(﹣)÷,其中x=.18.(10分)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19.(10分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.(10分)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)22.(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.2017年新疆乌鲁木齐市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•乌鲁木齐)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣2【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论.【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选A.【点评】本题考查的是绝对值和数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.2.(4分)(2017•乌鲁木齐)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°【分析】根据平行线的性质,以及邻补角的定义进行计算即可.【解答】解:∵直线a∥b,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故选:B.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.3.(4分)(2017•乌鲁木齐)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5D.a3b6【分析】根据整式的运算即可求出答案.【解答】解:原式=a3b6,故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(4分)(2017•乌鲁木齐)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小【分析】根据概率的意义以及中位数的定义、方差的意义分别分析得出答案.【解答】解:A、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;C、处于中间位置的数一定是中位数,说法错误;D、方差越大数据的波动越大,方差越小数据的波动越小,说法正确;故选:D.【点评】此题主要考查了中位数、方差、随机事件以及概率,关键是掌握中位数、随机事件的定义,掌握概率和方差的意义.5.(4分)(2017•乌鲁木齐)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.6.(4分)(2017•乌鲁木齐)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>2【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选A.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.(4分)(2017•乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5B.﹣=5C.+5=D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.8.(4分)(2017•乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.【解答】解:由三视图可知,原几何体为圆锥,∵l==2,∴S侧=•2πr•l=×2π××2=2π.故选B.【点评】本题考查了由三视图判断几何体、圆锥的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥是解题的关键.9.(4分)(2017•乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1B.C.2D.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.【点评】本题考查了翻折变换、矩形的性质、等边三角形的判定及性质以及解含30度角的直角三角形,根据边角关系及解直角三角形找出BC=4EC、DC=EC是解题的关键.10.(4分)(2017•乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.
本文标题:2017年新疆乌鲁木齐市中考数学试卷人教版七年级上册数学精品测试题
链接地址:https://www.777doc.com/doc-5638306 .html