您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 高等数学课后习题及参考答案第八章
高等数学课后习题及参考答案(第八章)习题811判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界(1){(xy)|x0y0}解开集无界集导集为R2边界为{(xy)|x0或y0}(2){(xy)|1x2y24}解既非开集又非闭集有界集导集为{(xy)|1x2y24}边界为{(xy)|x2y21或x2y24}(3){(xy)|yx2}解开集区域无界集导集为{(xy)|yx2}边界为{(xy)|yx2}(4){(xy)|x2(y1)21}{(xy)|x2(y2)24}解闭集有界集导集与集合本身相同边界为{(xy)|x2(y1)21}{(xy)|x2(y2)24}2已知函数yxxyyxyxftan),(22试求f(txty).解)(tan)()()()(),(22tytxtytxtytxtytxf),()tan(2222yxftyxxyyxt3试证函数F(xy)lnxlny满足关系式F(xyuv)F(xu)F(xv)F(yu)F(yv)证明F(xyuv)ln((xy)ln(uv)(lnxlny)(lnulnv)lnxlnulnxlnvlnylnulnylnvF(xu)F(xv)F(yu)F(yv)4已知函数f(uvw)uwwuv试求f(xyxyxy)解f(xyxyxy)(xy)xy(xy)(xy)(xy)(xy)xy(xy)2x5求下列各函数的定义域(1)zln(y22x1)解要使函数有意义必须y22x10故函数的定义域为D{(xy)|y22x10}(2)yxyxz11解要使函数有意义必须xy0xy0故函数的定义域为D{(xy)|xy0xy0}(3)yxz解要使函数有意义必须y00yx即yx于是有x0且x2y故函数定义域为D={(xy)|x0y0x2y}(4)221)ln(yxxxyz解要使函数有意义必须yx0x01x2y20故函数的定义域为D={(xy)|yx0x0x2+y21}(5)222222221rzyxzyxRu(Rr0)解要使函数有意义必须R2x2y2z20且x2+y2+z2r20故函数的定义域为D={(xyz)|r2x2+y2+z2R2}(6)22arccosyxzu解要使函数有意义必须x2+y20且1||22yxz即z2x2+y2故函数定义域为D={(xyz)|z2x2+y2x2+y20}6求下列各极限(1)22)1,0(),(1limyxxyyx解110011lim22)1,0(),(yxxyyx(2)22)0,1(),()ln(limyxexyyx解2ln01)1ln()ln(lim22022)0,1(),(eyxexyyx(3)xyxyyx42lim)0,0(),(解xyxyyx42lim)0,0(),()42()42)(42(lim)0,0(),(xyxyxyxyyx41)42(1lim)0,0(),(xyyx(4)11lim)0,0(),(xyxyyx解11lim)0,0(),(xyxyyx)11)(11()11(lim)0,0(),(xyxyxyxyyx2)11lim)11(lim)0,0(),()0,0(),(xyxyxyxyyxyx(5)yxyyx)sin(lim)0,2(),(解yxyyx)sin(lim)0,2(),(221sinlim)0,2(),(xxyxyyx(6)22)()cos(1lim2222)0,0(),(yxyxeyxyx解2222)()(21lim)()cos(1lim22222)0,0(),(2222)0,0(),(yxyxyxyxeyxyxeyxyx0lim212222)0,0(),(yxyxeyx(用等价无穷小代换)7证明下列极限不存在(1)yxyxyx)0,0(),(lim证明如果动点p(xy)沿y0趋向(00)则1limlim00)0,0(),(xxyxyxxyyx如果动点p(xy)沿x0趋向(00)则1limlim00)0,0(),(yyyxyxyxyx因此极限yxyxyx)0,0(),(lim不存在(2)22222)0,0(),()(limyxyxyxyx证明如果动点p(xy)沿yx趋于(00)则1lim)(lim44022222)0,0(),(xxyxyxyxxxyyx如果动点p(xy)沿y2x趋向(00)则044lim)(lim2440222222)0,0(),(xxxyxyxyxxxyyx因此极限22222)0,0(),()(limyxyxyxyx不存在8函数xyxyz2222在何处间断?解因为当y22x0时函数无意义所以在y22x0处函数xyxyz2222间断9证明0lim22)0,0(),(yxxyyx证明因为22||||2222222222yxyxyxyxxyyxxy所以02lim||lim022)0,0(),(22)0,0(),(yxyxxyyxyx因此0lim22)0,0(),(yxxyyx方法二证明因为2||22yxxy故22||22222222yxyxyxyxxy对于任意给定的0取2当220yx时恒有22|0|2222yxyxxy所以0lim22)0,0(),(yxxyyx10设F(xy)f(x)f(x)在x0处连续证明对任意y0RF(xy)在(x0y0)处连续证明由题设知f(x)在x0处连续故对于任意给定的0取0当|xx0|时有|f(x)f(x0)|作(x0y0)的邻域U((x0y0))显然当(xy)U((x0y0))时|xx0|从而|F(xy)F(x0y0)||f(x)f(x0)|所以F(xy)在点(x0y0)处连续又因为y0是任意的所以对任意y0RF(xy)在(x0y0)处连续习题821求下列函数的偏导数(1)zx3yy3x解323yyxxz233xyxyz(2)uvvus22解21)(uvvuvvuuus21)(vuuuvvuvvs(3))ln(xyz解xyxyxxxz1lnln121)lnln()ln(21xyx同理)ln(21xyyyz(4)zsin(xy)cos2(xy)解yxyxyyxyxz)]sin([)cos(2)cos()]2sin()[cos(xyxyy根据对称性可知)]2sin()[cos(xyxyxyz(5)yxztanln解yxyyyxyxxz2csc21sectan12yxyxyxyxyxyz2csc2sectan1222(6)z(1xy)y解121)1()1(yyxyyyxyyxz]1)1[ln()1ln()1ln(xyxyxyeeyyzxyyxyy]1)1[ln()1(xyxyxyxyy(7)zyxu解)1(zyxzyxuxxzzxxyuzyzyln11lnxxzyzyxxzuzyzyln)(ln22(8)uarctan(xy)z解zzyxyxzxu21)(1)(zzyxyxzyu21)(1)(zzyxyxyxzu2)(1)ln()(2设glT2试证0gTglTl解因为lglT1ggglgT1)21(223所以0glglgTglTl3设)11(yxez求证zyzyxzx222解因为2)11(1xexzyx2)11(1yeyzyx所以zeeyzyxzxyxyx2)11()11(224设yxyxyxfarcsin)1(),(求)1,(xfx解因为xxxxf1arcsin)11()1,(所以1)1,()1,(xfdxdxfx5曲线4422yyxz在点(245)处的切线与正向x轴所成的倾角是多少?解因为242xxxztan1)5,4,2(xz故46求下列函数的22xz22yzyxz2(1)zx4y44x2y2解2384xyxxz2222812yxxzyxyyz23842222812xyyzxyyxyyyxz16)84(232(2)xyzarctan解22222)(11yxyxyxyxz22222)(2yxxyxz2222)1(11yxxxxyyz22222)(2yxxyyz22222222222222)()(2)()(yxxyyxyyxyxyyyxz(3)zyx解yyxzxlnyyxzx222ln1xxyyz222)1(xyxxyz)1ln(1ln)ln(112yxyyyyxyyyyyxzxxxx7设f(xyz)xy2yz2zx2求fxx(001)fxz(102)fyz(010)及fzzx(201)解因为fxy22xzfxx2zfxz2xfy2xyz2fyz2zfz2yzx2fzz2yfzzx0所以fxx(001)2fxz(102)2fyz(010)0fzzx(201)08设zxln(xy)求yxz23及23yxz解1)ln()ln(xyxyyxxyxzxxyyxz122023yxzyxyxyxz122231yyxz9验证(1)nxeytknsin2满足22xykty证明因为nxeknknnxetytkntknsin)(sin2222nxnexytkncos2nxenxytknsin2222nxeknxyktknsin2222所以22xykty(2)222zyxr满足rzryrxr2222222证明rxzyxxxr222322222rxrrxrxrxr由对称性知32222ryryr32222rzrzr因此322322322222222
本文标题:高等数学课后习题及参考答案第八章
链接地址:https://www.777doc.com/doc-5640480 .html